机器学习与人工智能将应用于哪些安全领域?

简介:


机器学习正在不断加的加快前进的步伐,是时候来探讨这个问题了。人工智能真的能在未来对抗网络攻击,自主地保护我们的系统吗?


如今,越来越多的网络攻击者通过自动化技术发起网络攻击,而受到攻击的企业或组织却仍在使用人力来汇总内部安全发现,再结合外部威胁信息进行对比。利用这种传统的方式部署的入侵检测系统往往需要花费数周,甚至几个月的时间,然而就在安全人员修复的这段时间内,攻击者依然能够利用漏洞侵入系统,肆意掠夺数据。为了应对这些挑战,一些先行者开始利用人工智能来完成日常的网络风险管理操作。


根据Verizon Data Breach的报告,超过70%的攻击是通过发现补丁利用已知漏洞完成的。同时,调查结果表明,一个黑客可以在漏洞公布出来的几分钟内利用该漏洞尝试入侵。修复速度的重要性可见一斑。然而,由于安全专业人员的短缺再加上大数据集需要在安全的状态下处理,因此漏洞补救措施无法跟上网络攻击者并不奇怪。


近期,工业调查表明组织机构平均需要146天的时间才能修复致命漏洞。这些发现无疑给我们敲响了警钟,重新思考现有的企业安全势在必行。


攻击者长期利用机器和自动化技术来简化操作。那我们又未尝不可?


2016年,业界开始将人工智能和机器学习视为圣杯,提高了组织机构的检测和响应能力。 利用反复学习数据的方式得到的算法,来保证发现威胁,而这个过程不需要操作者考虑“要找什么东西”的问题。最终,人工智能能够在三个特定事件中帮助人类自动化解决问题。


大数据识别威胁


当出现网络安全这一概念的时候,所有的组织机构就面临了一个难题。


在过去,关注网络和终端的保护就可以了,而如今应用程序,云服务和移动设备(例如平板电脑,手机,蓝牙设备和智能手表)的加入,使得组织机构的发展这些项目的同时,必须针对它们做好足够的防御。然而需要防御的攻击面在不断扩大,在将来会变得更大。


这种“更广泛和更深层”的攻击面只会增加如何管理组织中无数IT和安全工具生成的数据的数量,速度和复杂性等现有问题。分析、归一化、优先处理被攻破的系统显得尤为重要。工具越多,挑战的难度越大;攻击面越广,要做的数据分析也就越多。 传统上,手工修复需要大量的工作人员梳理大量的数据连接点和发现潜在的威胁。在安全人员在努力修复几个月时间内,攻击者就能利用漏洞提取数据。


突破现有的思维方式、自动化执行传统的安全操作已成为补充稀缺的网络安全运营人才的头等大事。 就是在这种大环境下,使用人机交互式机器学习引擎可以达到自动化跨不同数据类型的数据聚合、 搜集评估数据到合规要求、规范化信息以排除误报,重复报告以及大量的数据属性的效果。


更具关联性的风险评估


一旦发现内部安全情报与外部威胁数据(例如,漏洞利用,恶意软件,威胁行为者,声誉智能)相匹配,那么首先要确定的就是这些发现是否与关键业务相关联,否则无法确定真正存在的风险及其对业务的最终影响。 打个比方,假设在某次机器的处理过程中,由于机器不知道“coffee服务器”相比“email务器”对业务的影响,最终导致了补救措施无法集中在真正需要补救的事件中。在这个例子中,人机交互的机器学习和高级算法起了适得其反的效果,这不是我们愿意看到的现象。 


自学习的应急响应


增加负责确定安全漏洞的安全团队和专注于补救这些团队的IT运营团队之间的协作仍然是许多组织面临的挑战。 使用基于风险的网络安全概念作为蓝图,可以实施主动安全事件通知和人机交互环路干预的自动化过程。 通过建立阈值和预定义的规则,企业、机构还可以通过编制补救措施来的方式及时修复安全漏洞。


虽然机器学习可以帮助减少修复时间,但它是否能够自主地保护组织免受网络攻击?


很多时候,无人监督的机器学习会因为疲于警报以及注意力的原因降导致误报和警报频发。 对于攻击者来说,这个结果无疑给他们带来了破坏机器学习的新思路。 但是不得不承认的是,如今已经达到了一个临界点,人类已经无法继续处理大量的安全数据。 这才引出了所谓的人机交互式机器学习。


人机交互式机器学习系统分析内部安全智能,并将其与外部威胁数据相关联,帮助人类在海量的数据中发现威胁数据。 然后人类通过标记最相关的威胁向系统提供反馈。 随着时间的推移,系统会根据人类输入调整其监测和分析,优化发现真实网络威胁和最小化误报的可能性。


让机器学习在一线安全数据评估中取得重大进展,使分析人员能够专注于对威胁进行更高级的调查,而不是执行战术性的数据处理。 

原文发布时间为:2017-02-25

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号

相关文章
|
2天前
|
人工智能 安全 网络安全
揭秘!大模型私有化部署的全方位安全攻略与优化秘籍,让你的AI项目稳如磐石,数据安全无忧!
【10月更文挑战第24天】本文探讨了大模型私有化部署的安全性考量与优化策略,涵盖数据安全、防火墙配置、性能优化、容器化部署、模型更新和数据备份等方面,提供了实用的示例代码,旨在为企业提供全面的技术参考。
21 6
|
3天前
|
机器学习/深度学习 人工智能 供应链
AI技术在医疗领域的应用与未来展望###
本文深入探讨了人工智能(AI)技术在医疗领域的多种应用及其带来的革命性变化,从疾病诊断、治疗方案优化到患者管理等方面进行了详细阐述。通过具体案例和数据分析,展示了AI如何提高医疗服务效率、降低成本并改善患者体验。同时,文章也讨论了AI技术在医疗领域面临的挑战和未来发展趋势,为行业从业者和研究人员提供参考。 ###
|
1天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的无限可能:技术前沿与应用实践
【10月更文挑战第23天】探索人工智能的无限可能:技术前沿与应用实践
|
4天前
|
机器学习/深度学习 人工智能 算法
AI技术在医疗领域的应用与挑战
【10月更文挑战第21天】 本文探讨了人工智能(AI)在医疗领域的多种应用,包括疾病诊断、治疗方案推荐、药物研发和患者管理等。通过分析这些应用案例,我们可以看到AI技术如何提高医疗服务的效率和准确性。然而,AI在医疗领域的广泛应用也面临诸多挑战,如数据隐私保护、算法透明度和伦理问题。本文旨在为读者提供一个全面的视角,了解AI技术在医疗领域的潜力和面临的困难。
|
4天前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
3天前
|
机器学习/深度学习 人工智能 搜索推荐
AI在医疗健康领域的应用与前景
随着科技的不断进步,人工智能(AI)技术已经深入到我们生活的方方面面,特别是在医疗健康领域。本文将探讨AI在医疗健康领域的应用现状、面临的挑战以及未来的发展前景。
|
4天前
|
人工智能 自然语言处理 监控
AI技术在文本情感分析中的应用
【10月更文挑战第22天】本文将探讨人工智能(AI)如何改变我们对文本情感分析的理解和应用。我们将通过实际的代码示例,深入了解AI如何帮助我们识别和理解文本中的情感。无论你是AI新手还是有经验的开发者,这篇文章都将为你提供有价值的信息。让我们一起探索AI的奇妙世界吧!
14 3
|
3天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,企业越来越关注大模型的私有化部署。本文详细探讨了硬件资源需求、数据隐私保护、模型可解释性、模型更新和维护等方面的挑战及解决方案,并提供了示例代码,帮助企业高效、安全地实现大模型的内部部署。
9 1
|
3天前
|
人工智能 分布式计算 数据可视化
大模型私有化部署全攻略:硬件需求、数据隐私、可解释性与维护成本挑战及解决方案详解,附示例代码助你轻松实现企业内部AI应用
【10月更文挑战第23天】随着人工智能技术的发展,大模型在各领域的应用日益广泛。然而,将其私有化部署到企业内部面临诸多挑战,如硬件资源需求高、数据隐私保护、模型可解释性差、更新维护成本高等。本文探讨了这些挑战,并提出了优化硬件配置、数据加密、可视化工具、自动化更新机制等解决方案,帮助企业顺利实现大模型的私有化部署。
10 1
|
4天前
|
人工智能 边缘计算 监控
边缘AI计算技术应用-实训解决方案
《边缘AI计算技术应用-实训解决方案》提供完整的实训体系,面向高校和科研机构的AI人才培养需求。方案包括云原生AI平台、百度AIBOX边缘计算硬件,以及8门计算机视觉实训课程与2门大模型课程。AI平台支持大规模分布式训练、超参数搜索、标注及自动化数据管理等功能,显著提升AI训练与推理效率。硬件涵盖多规格AIBOX服务器,支持多种推理算法及灵活部署。课程涵盖从计算机视觉基础到大模型微调的完整路径,通过真实商业项目实操,帮助学员掌握前沿AI技术和产业应用。
20 2

热门文章

最新文章