Nature Methods | 深度学习蛋白质三维结构

简介: Nature Methods | 深度学习蛋白质三维结构

image.png

nature methods副主编,Arunima Singh,3月4日在nature methods上发表文章,探讨了基于深度学习的蛋白质结构预测方向近期的研究进展。



蛋白质结构预测是近几十年来的研究热点,理论方法使人们深入了解了实验难以处理的蛋白质结构。同时,随着测定蛋白质结构的实验方法的改进,大量高质量蛋白质结构数据可供研究,提高了训练数据的质量和预测算法的准确性。最终的研究目标是利用蛋白质的序列准确地预测蛋白质的三维结构。当然,在已知同源蛋白结构的情况下,是更容易预测的。

image.png

对于缺乏同源信息的蛋白质,准确预测蛋白质结构仍然是一个挑战。进化协方差数据已经被用于增强结构预测性能。可以对与靶序列相关的序列应用多序列比对(MSA),来识别在进化过程中发生突变的氨基酸,其原理是这些共同进化的残基将位于蛋白质的三维结构中的邻近位置或接触。这些接触图应用在几种流行的方法中都取得了一些成功。

image.png

基于深度学习的方法在第13届蛋白质结构预测技术评估测试(CASP13)中表现出很高的准确性,并且在无模板建模(FM)类(没有可用的同源结构)中表现极佳。谷歌DeepMind团队的新秀参赛者AlphaFold[1],赢得了此次比赛。它在FM类中正确预测的结构数量最多——43种蛋白质中正确预测了24种。在基于模板建模的类别中,AlphaFold的表现相当于或优于其他方法(尽管AlphaFold没有使用模板)。

image.png

AlphaFold的准确度来源于高精度的残基对距离预测。AlphaFold用Protein Data Bank中的蛋白质结构训练卷积神经网络。给定输入序列及其MSA,AlphaFold预测残基之间的成对距离和扭转角。使用梯度下降优化这些距离,以获得准确的蛋白质结构。利用残基接触距离的优点是它们提供了更具体的结构信息。此外,神经网络生成关于距离预测的方差数据,DeepMind成员Andrew Senior补充道,方差表明各预测的置信度。DeepMind团队认为,蛋白质结构预测问题是深度学习的一大挑战,他们打算继续研究这一问题,并进一步提高算法的预测能力。


在DeepMind的基础上,华盛顿大学西雅图分校的David Baker研究小组与合作者开发了trRosetta。Baker指出,trRosetta同时使用残基-残基的距离和方向,与只使用距离相比,trRosetta利用了更丰富的结构数据。预测工具网址:https://yanglab.nankai.edu.cn/trRosetta/。Baker等人的论文[2]重点介绍了这种方法如何与基于Rosetta的优化方法一起使用,并将预测信息与Rosetta能量函数的其他组件结合起来,以建立蛋白质模型。Baker实验室正在寻求将该方法扩展到建模预测蛋白质-蛋白质相互作用和蛋白质设计。

image.png


目录
相关文章
|
8月前
|
机器学习/深度学习 存储 人工智能
深度学习第1天:深度学习入门-Keras与典型神经网络结构
深度学习第1天:深度学习入门-Keras与典型神经网络结构
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
84 8
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
深度学习还不如浅层网络?RL教父Sutton持续反向传播算法登Nature
【9月更文挑战第24天】近年来,深度学习在人工智能领域取得巨大成功,但在连续学习任务中面临“损失可塑性”问题,尤其在深度强化学习中更为突出。加拿大阿尔伯塔大学的研究人员提出了一种名为“持续反向传播”的算法,通过选择性地重新初始化网络中的低效用单元,保持模型的可塑性。该算法通过评估每个连接和权重的贡献效用来决定是否重新初始化隐藏单元,并引入成熟度阈值保护新单元。实验表明,该算法能显著提升连续学习任务的表现,尤其在深度强化学习领域效果明显。然而,算法也存在计算复杂性和成熟度阈值设置等问题。
89 2
|
4月前
|
机器学习/深度学习
深度学习之蛋白质结构预测
基于深度学习的蛋白质结构预测是利用深度学习模型来预测蛋白质的三维结构,这在生物学和药物研发领域具有重要意义。
176 4
|
6月前
|
机器学习/深度学习 自然语言处理 算法
深度学习的关键概念和网络结构
度学习是人工智能和机器学习的一个重要分支,它通过模拟人脑神经元的工作方式来处理复杂的模式识别和数据分析任务。深度学习已经在许多领域取得了显著的成果,如图像识别、语音识别和自然语言处理。
81 1
|
6月前
|
机器学习/深度学习 PyTorch 算法框架/工具
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
图神经网络是一类用于处理图结构数据的神经网络。与传统的深度学习模型(如卷积神经网络CNN和循环神经网络RNN)不同,
|
5月前
|
机器学习/深度学习 API 数据处理
《零基础实践深度学习》2.4手写数字识别之网络结构
这篇文章介绍了手写数字识别任务中网络结构设计的优化,比较了多层全连接神经网络和卷积神经网络两种模型结构,并展示了使用PaddlePaddle框架实现这些网络结构,训练并观察它们在MNIST数据集上的表现。
|
8月前
|
机器学习/深度学习 编解码 算法
深度学习之解构基础网络结构
本文和大家梳理分享一下大师们的探索成果,即经典的基础网络(backbone)以及关键思想,附带实现过程。5月更文挑战第6天
79 3
|
7月前
|
机器学习/深度学习 数据可视化 TensorFlow
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
【手把手教学】如何可视化YOLOv8深度学习的网络结构并保存
|
8月前
|
机器学习/深度学习 自然语言处理 TensorFlow
【Python深度学习】RNN循环神经网络结构讲解及序列回归问题实战(图文解释 附源码)
【Python深度学习】RNN循环神经网络结构讲解及序列回归问题实战(图文解释 附源码)
159 0