深度学习第1天:深度学习入门-Keras与典型神经网络结构

简介: 深度学习第1天:深度学习入门-Keras与典型神经网络结构



神经网络

介绍

我们知道,深度学习也是机器学习的一个范畴,所以它满足机器学习的基本思想:从数据中拟合出某种规律,只是它的模型结构与经典机器学习的模型不同,且具有特色:它的模型结构像人脑的神经元一样连接,所以我们也把这种结构叫做神经网络

结构

由数个神经元组成一层,整个神经网络由多个层组成,最开始的层叫做输入层,最后的层叫做输出层,输入层与输出层中间的叫做隐藏层,层与层之间互相连接

基本要素

作为机器学习的一种,深度学习当然也有模型性能评估函数损失函数优化方法,神经网络还有一个激活函数的概念,这个激活函数添加到某个神经网络的层上,将输入经过某种函数变化后再输出,常见的激活函数有sigmoid,relu等,不用着急,这些概念我们在之后的系列文章中都会反复提到


Keras

介绍

本系列教程将主要使用Keras库进行讲解,Keras是一个流行的python深度学习库,在许多人工智能竞赛中使用量都居于领先地位

导入

from keras.models import Sequential # 导入Sequential 模型
from keras.layers import Dense # 导入Dense层
import numpy as np

Sequential是一种存储神经网络的模型

Dense是全连接层,每个神经元都与上一层的所有神经元相连

定义网络

model = Sequential()
model.add(Dense(6, input_dim=4, activation='relu'))
model.add(Dense(1, activation='sigmoid'))

这行代码先创建了一个Sequential模型,然后往里面添加了两个全连接层,第一个全连接层的输入是4个神经元,这一层有6个神经元,激活函数是relu,第二个全连接层只有一个神经元,而它的输入由上一层自动判断,也就是6个神经元,激活函数是sigmoid

模型训练

# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 
# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

compile初始化了一些基本设置 ,定义了损失函数(loss),定义了优化器(optimizer),定义了评估模型性能的指标(metrics)

fit开始训练模型,epochs定义了训练批次,batch_size设置了每次训练提取的样本数(深度学习训练过程每次一般都是抽取训练集的一个子集,这样做往往可以提高模型训练速度)


前馈神经网络

特点

前一个神经元的输出是后一个神经元的输入,一般结构如下图所示

常见类型

感知机,全连接神经网络,深度神经网络,卷积神经网络

代码示例

from keras.models import Sequential
from keras.layers import Dense
import numpy as np
 
# 生成一些示例数据
X = np.random.random((1000, 20))
y = np.random.randint(2, size=(1000, 1))
 
# 定义简单的前馈神经网络
model = Sequential()
model.add(Dense(64, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
 
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 
# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的前馈神经网络,整个模型结构有一个输入层(就是我们输入的数据,这个层没有添加到Sequential中),一个隐藏层,一个输出层


反馈神经网络

特点

某一个神经元的输入不只与前一个神经元有关,而是可能与之前的所有神经元有关

作用

反馈神经网络通常用来处理序列数据,如语音,文本等,因为这些数据通常跟前后文有关,我们需要反馈神经网络的结构来记忆前后文的关系

常见类型

循环神经网络,长短时记忆网络

代码示例

from keras.models import Sequential
from keras.layers import SimpleRNN, Dense
import numpy as np
 
# 生成一些示例数据
X = np.random.random((1000, 10, 20))  # 1000个样本,每个样本有10个时间步,每个时间步有20个特征
y = np.random.randint(2, size=(1000, 1))
 
# 定义简单的反馈神经网络
model = Sequential()
model.add(SimpleRNN(64, input_shape=(10, 20), activation='relu'))
model.add(Dense(1, activation='sigmoid'))
 
# 编译模型
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
 
# 训练模型
model.fit(X, y, epochs=10, batch_size=32)

这段代码定义了一个最简单的反馈神经网络,隐藏层为RNN层,设置时间步为10,这意味着数据会在RNN层循环十次后再输入到下一层

结语

对于深度学习,我们主要要了解以下几个方面

  • 神经网络中层与层的连接方式(前馈,反馈)
  • 各种神经网络层的作用(卷积层,池化层)
  • 激活函数(relu)
  • 损失函数
  • 优化方法
相关文章
|
7天前
|
机器学习/深度学习 人工智能 算法
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
眼疾识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了4种常见的眼疾图像数据集(白内障、糖尿病性视网膜病变、青光眼和正常眼睛) 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,实现用户上传一张眼疾图片识别其名称。
23 4
基于Python深度学习的眼疾识别系统实现~人工智能+卷积网络算法
|
29天前
|
机器学习/深度学习 人工智能 算法
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
257 55
|
1月前
|
机器学习/深度学习 人工智能 算法
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
176 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
|
26天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于yolov4深度学习网络的公共场所人流密度检测系统matlab仿真,带GUI界面
本项目使用 MATLAB 2022a 进行 YOLOv4 算法仿真,实现公共场所人流密度检测。通过卷积神经网络提取图像特征,将图像划分为多个网格进行目标检测和识别,最终计算人流密度。核心程序包括图像和视频读取、处理和显示功能。仿真结果展示了算法的有效性和准确性。
61 31
|
21天前
|
JSON Dart 前端开发
鸿蒙应用开发从入门到入行 - 篇7:http网络请求
在本篇文章里,您将掌握鸿蒙开发工具DevEco的基本使用、ArkUI里的基础组件,并通过制作一个简单界面掌握使用
62 8
|
1月前
|
机器学习/深度学习 资源调度 算法
图卷积网络入门:数学基础与架构设计
本文系统地阐述了图卷积网络的架构原理。通过简化数学表述并聚焦于矩阵运算的核心概念,详细解析了GCN的工作机制。
113 3
图卷积网络入门:数学基础与架构设计
|
1月前
|
机器学习/深度学习 算法 信息无障碍
基于GoogleNet深度学习网络的手语识别算法matlab仿真
本项目展示了基于GoogleNet的深度学习手语识别算法,使用Matlab2022a实现。通过卷积神经网络(CNN)识别手语手势,如"How are you"、"I am fine"、"I love you"等。核心在于Inception模块,通过多尺度处理和1x1卷积减少计算量,提高效率。项目附带完整代码及操作视频。
|
1月前
|
Web App开发 网络协议 安全
网络编程懒人入门(十六):手把手教你使用网络编程抓包神器Wireshark
Wireshark是一款开源和跨平台的抓包工具。它通过调用操作系统底层的API,直接捕获网卡上的数据包,因此捕获的数据包详细、功能强大。但Wireshark本身稍显复杂,本文将以用抓包实例,手把手带你一步步用好Wireshark,并真正理解抓到的数据包的各项含义。
90 2
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##