Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)

简介: Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)

Machine Learning | 机器学习简介


Machine Learning | (1) Scikit-learn与特征工程


Machine Learning | (2) sklearn数据集与机器学习组成


Machine Learning | (3) Scikit-learn的分类器算法-k-近邻


Machine Learning | (4) Scikit-learn的分类器算法-逻辑回归


Machine Learning | (5) Scikit-learn的分类器算法-朴素贝叶斯


Machine Learning | (6) Scikit-learn的分类器算法-性能评估


Machine Learning | (7) Scikit-learn的分类器算法-决策树(Decision Tree)


Machine Learning | (8) Scikit-learn的分类器算法-随机森林(Random Forest)


随机森林(Random Forest)

在机器学习中,随机森林(Random Forest)是一个包含多个决策树的分类器,并且其输出的类别是由个别树输出的类别的众数而定。利用相同的训练数搭建多个独立的分类模型,然后通过投票的方式,以少数服从多数的原则作出最终的分类决策。例如, 如果你训练了5个树, 其中有4个树的结果是True, 1个数的结果是False, 那么最终结果会是True.


在前面的决策当中我们提到,一个标准的决策树会根据每维特征对预测结果的影响程度进行排序,进而决定不同的特征从上至下构建分裂节点的顺序,如此以来,所有在随机森林中的决策树都会受这一策略影响而构建的完全一致,从而丧失的多样性。所以在随机森林分类器的构建过程中,每一棵决策树都会放弃这一固定的排序算法,转而随机选取特征。


学习算法

根据下列算法而建造每棵树:


用N来表示训练用例(样本)的个数,M表示特征数目。

输入特征数目m,用于确定决策树上一个节点的决策结果;其中m应远小于M。

从N个训练用例(样本)中以有放回抽样的方式,取样N次,形成一个训练集(即bootstrap取样),并用未抽到的用例(样本)作预测,评估其误差。

对于每一个节点,随机选择m个特征,决策树上每个节点的决定都是基于这些特征确定的。根据这m个特征,计算其最佳的分裂方式。

sklearn.ensemble,集成方法模块

sklearn.ensemble提供了准确性更加好的集成方法,里面包含了主要的RandomForestClassifier(随机森林)方法。

class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None)
  """
  :param n_estimators:integer,optional(default = 10) 森林里的树木数量。
  :param criteria:string,可选(default =“gini”)分割特征的测量方法
  :param max_depth:integer或None,可选(默认=无)树的最大深度
  :param bootstrap:boolean,optional(default = True)是否在构建树时使用自举样本。
  """

属性

classes_:shape = [n_classes]的数组或这样的数组的列表,类标签(单输出问题)或类标签数组列表(多输出问题)。

featureimportances:array = [n_features]的数组, 特征重要性(越高,功能越重要)。

方法

fit(X,y [,sample_weight]) 从训练集(X,Y)构建一棵树林。


predict(X) 预测X的类


score(X,y [,sample_weight]) 返回给定测试数据和标签的平均精度。


decision_path(X) 返回森林中的决策路径


泰坦尼克号乘客数据案例

这里我们通过决策树和随机森林对这个数据进行一个分类,判断乘客的生还。

import pandas as pd
import sklearn
from sklearn.cross_validation import train_test_split
from sklearn.feature_extraction import DictVectorizer
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import classification_report
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
titanic = pd.read_csv('http://biostat.mc.vanderbilt.edu/wiki/pub/Main/DataSets/titanic.txt')
#选取一些特征作为我们划分的依据
x = titanic[['pclass', 'age', 'sex']]
y = titanic['survived']
# 填充缺失值
x['age'].fillna(x['age'].mean(), inplace=True)
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25)
dt = DictVectorizer(sparse=False)
print(x_train.to_dict(orient="record"))
# 按行,样本名字为键,列名也为键,[{"1":1,"2":2,"3":3}]
x_train = dt.fit_transform(x_train.to_dict(orient="record"))
x_test = dt.fit_transform(x_test.to_dict(orient="record"))
# 使用决策树
dtc = DecisionTreeClassifier()
dtc.fit(x_train, y_train)
dt_predict = dtc.predict(x_test)
print(dtc.score(x_test, y_test))
print(classification_report(y_test, dt_predict, target_names=["died", "survived"]))
# 使用随机森林
rfc = RandomForestClassifier()
rfc.fit(x_train, y_train)
rfc_y_predict = rfc.predict(x_test)
print(rfc.score(x_test, y_test))
print(classification_report(y_test, rfc_y_predict, target_names=["died", "survived"]))


目录
相关文章
|
4月前
|
机器学习/深度学习 存储 算法
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
本文介绍了一种名为"Synaptic Intelligence"(SI)的持续学习方法,通过模拟生物神经网络的智能突触机制,解决了人工神经网络在学习新任务时的灾难性遗忘问题,并保持了计算效率。
104 1
【博士每天一篇论文-算法】Continual Learning Through Synaptic Intelligence,SI算法
|
4月前
|
存储 算法
【博士每天一篇文献-算法】On tiny episodic memories in continual learning
本文研究了在连续学习环境中使用小型情节记忆来解决灾难性遗忘问题,通过实证分析发现经验重播(ER)方法在连续学习中的表现优于现有最先进方法,并且重复训练对过去任务的小型记忆可以提升泛化性能。
26 1
【博士每天一篇文献-算法】On tiny episodic memories in continual learning
|
4月前
|
机器学习/深度学习 算法 计算机视觉
【博士每天一篇文献-算法】持续学习经典算法之LwF: Learning without forgetting
LwF(Learning without Forgetting)是一种机器学习方法,通过知识蒸馏损失来在训练新任务时保留旧任务的知识,无需旧任务数据,有效解决了神经网络学习新任务时可能发生的灾难性遗忘问题。
292 9
|
4月前
|
机器学习/深度学习 算法 机器人
【博士每天一篇文献-算法】改进的PNN架构Lifelong learning with dynamically expandable networks
本文介绍了一种名为Dynamically Expandable Network(DEN)的深度神经网络架构,它能够在学习新任务的同时保持对旧任务的记忆,并通过动态扩展网络容量和选择性重训练机制,有效防止语义漂移,实现终身学习。
65 9
|
4月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】Fearnet Brain-inspired model for incremental learning
本文介绍了FearNet,一种受大脑记忆机制启发的神经网络模型,用于解决增量学习中的灾难性遗忘问题。FearNet不存储先前的例子,而是使用由海马体复合体和内侧前额叶皮层启发的双记忆系统,以及一个受基底外侧杏仁核启发的模块来决定使用哪个记忆系统进行回忆,有效减轻了灾难性遗忘,且在多个数据集上取得了优异的性能。
38 6
|
4月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之HNet:Continual learning with hypernetworks
本文提出了一种基于任务条件超网络(Hypernetworks)的持续学习模型,通过超网络生成目标网络权重并结合正则化技术减少灾难性遗忘,实现有效的任务顺序学习与长期记忆保持。
55 4
|
4月前
|
机器学习/深度学习 存储 人工智能
【博士每天一篇文献-算法】改进的PNN架构Progressive learning A deep learning framework for continual learning
本文提出了一种名为“Progressive learning”的深度学习框架,通过结合课程选择、渐进式模型容量增长和剪枝机制来解决持续学习问题,有效避免了灾难性遗忘并提高了学习效率。
90 4
|
4月前
|
存储 机器学习/深度学习 算法
【博士每天一篇文献-算法】连续学习算法之RWalk:Riemannian Walk for Incremental Learning Understanding
RWalk算法是一种增量学习框架,通过结合EWC++和修改版的Path Integral算法,并采用不同的采样策略存储先前任务的代表性子集,以量化和平衡遗忘和固执,实现在学习新任务的同时保留旧任务的知识。
103 3
|
4月前
|
机器学习/深度学习 存储 人工智能
【博士每天一篇文献-算法】Zero-Shot Machine Unlearning
这篇论文提出了零样本机器遗忘的概念,介绍了两种新方法——错误最小化-最大化噪声(Error Maximization-Minimization, M-M)和门控知识传输(Gated Knowledge Transfer, GKT),以实现在不访问原始训练数据的情况下从机器学习模型中删除特定数据,同时引入了Anamnesis指数来评估遗忘质量,旨在帮助企业有效遵守数据隐私法规。
78 3
|
4月前
|
机器学习/深度学习 存储 人工智能
【博士每天一篇文献-算法】Memory aware synapses_ Learning what (not) to forget
本文介绍了一种名为“记忆感知突触”(Memory Aware Synapses, MAS)的终身学习方法,该方法通过无监督在线评估神经网络参数的重要性,并在新任务学习时对重要参数的更改进行惩罚,有效防止了旧任务知识的覆盖,实现了内存效率和性能提升,同时具有灵活性和通用性。
57 1