高可用架构(10)-Hystrix隔离策略、Command及资源池大小控制(下)

简介: 高可用架构(10)-Hystrix隔离策略、Command及资源池大小控制(下)

3 command线程池

ThreadPoolKey代表了一个HystrixThreadPool,用来进行统一监控,统计,缓存

4.png

默认的threadpool key就是command group名称

5.png

每个command都会跟它的ThreadPoolKey对应的ThreadPool绑定

如果不想直接用command group,也可以手动设置thread pool name

public CommandHelloWorld(String name) {
    super(Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"))
            .andCommandKey(HystrixCommandKey.Factory.asKey("HelloWorld"))
            .andThreadPoolKey(HystrixThreadPoolKey.Factory.asKey("HelloWorldPool")));
    this.name = name;
}

command threadpool => command group => command key

command key

6.png

  • 代表了一类command,代表底层的依赖服务的一个接口
  • command group

7.png

代表了某一个底层的依赖服务,合理,一个依赖服务可能会暴露出来多个接口,每个接口就是一个command key


command group

在逻辑上去组织起来一堆command key的调用,统计信息,成功次数,timeout超时次数,失败次数,可以看到某一个服务整体的一些访问情况

推荐是根据一个服务去划分出一个线程池,command key默认都是属于同一个线程池的


比如说你以一个服务为粒度,估算出来这个服务每秒的所有接口加起来的整体QPS在100左右

你调用那个服务的当前服务,部署了10个服务实例,每个服务实例上,其实用这个command group对应这个服务,给一个线程池,量大概在10个左右,就可以了,你对整个服务的整体的访问QPS大概在每秒100左右


一般来说,command group是用来在逻辑上组合一堆command的


举个例子,对于一个服务中的某个功能模块来说,希望将这个功能模块内的所有command放在一个group中,那么在监控和报警的时候可以放一起看

command group,对应了一个服务,但是这个服务暴露出来的几个接口,访问量很不一样,差异非常之大

你可能就希望在这个服务command group内部,包含的对应多个接口的command key,做一些细粒度的资源隔离

对同一个服务的不同接口,都使用不同的线程池

command key -> command group
command key -> 自己的threadpool key

逻辑上来说,多个command key属于一个command group,在做统计的时候,会放在一起统计


每个command key有自己的线程池,每个接口有自己的线程池,去做资源隔离和限流


但对于thread pool资源隔离来说,可能是希望能够拆分的更加一致一些,比如在一个功能模块内,对不同的请求可以使用不同的thread pool


command group一般来说,可以是对应一个服务,多个command key对应这个服务的多个接口,多个接口的调用共享同一个线程池


如果说你的command key,要用自己的线程池,可以定义自己的threadpool key,就ok了


4 coreSize

设置线程池的大小,默认是10

HystrixThreadPoolProperties.Setter()
               .withCoreSize(int value)

一般来说,用这个默认的10个线程大小就够了


5 queueSizeRejectionThreshold

控制queue满后reject的threshold,因为maxQueueSize不允许热修改,因此提供这个参数可以热修改,控制队列的最大值


HystrixCommand在提交到线程池之前,其实会先进入一个队列中,这个队列满了之后,才会reject


默认值是5

HystrixThreadPoolProperties.Setter()
   .withQueueSizeRejectionThreshold(int value)

线程池+queue的工作原理

8.png

6isolation.semaphore.maxConcurrentRequests

设置使用SEMAPHORE隔离策略的时候,允许访问的最大并发量,超过这个最大并发量,请求直接被reject


这个并发量的设置,跟线程池大小的设置,应该是类似的

但是基于信号量的话,性能会好很多,而且hystrix框架本身的开销会小很多


默认值是10,设置的小一些,否则因为信号量是基于调用线程去执行command的,而且不能从timeout中抽离,因此一旦设置的太大,而且有延时发生,可能瞬间导致tomcat本身的线程资源本占满

9.png

目录
相关文章
|
7天前
|
消息中间件 存储 Cloud Native
云原生架构下的数据一致性挑战与应对策略####
本文探讨了在云原生环境中,面对微服务架构的广泛应用,数据一致性问题成为系统设计的核心挑战之一。通过分析云原生环境的特点,阐述了数据不一致性的常见场景及其对业务的影响,并深入讨论了解决这些问题的策略,包括采用分布式事务、事件驱动架构、补偿机制以及利用云平台提供的托管服务等。文章旨在为开发者提供一套系统性的解决方案框架,以应对在动态、分布式的云原生应用中保持数据一致性的复杂性。 ####
|
3天前
|
Cloud Native 安全 API
云原生架构下的微服务治理策略与实践####
—透过云原生的棱镜,探索微服务架构下的挑战与应对之道 本文旨在探讨云原生环境下,微服务架构所面临的关键挑战及有效的治理策略。随着云计算技术的深入发展,越来越多的企业选择采用云原生架构来构建和部署其应用程序,以期获得更高的灵活性、可扩展性和效率。然而,微服务架构的复杂性也带来了服务发现、负载均衡、故障恢复等一系列治理难题。本文将深入分析这些问题,并提出一套基于云原生技术栈的微服务治理框架,包括服务网格的应用、API网关的集成、以及动态配置管理等关键方面,旨在为企业实现高效、稳定的微服务架构提供参考路径。 ####
23 5
|
7天前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
5天前
|
Kubernetes 负载均衡 Cloud Native
云原生架构下的微服务治理策略
随着云原生技术的不断成熟,微服务架构已成为现代应用开发的主流选择。本文探讨了在云原生环境下实施微服务治理的策略和方法,重点分析了服务发现、负载均衡、故障恢复和配置管理等关键技术点,以及如何利用Kubernetes等容器编排工具来优化微服务的部署和管理。文章旨在为开发者提供一套实用的微服务治理框架,帮助其在复杂的云环境中构建高效、可靠的分布式系统。
19 5
|
5天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型浪潮中,企业纷纷拥抱云计算,而云原生架构作为其核心技术支撑,正引领着一场深刻的技术变革。本文聚焦于云原生环境下微服务架构的治理策略与实践,探讨如何通过精细化的服务管理、动态的流量调度、高效的故障恢复机制以及持续的监控优化,构建弹性、可靠且易于维护的分布式系统。我们将深入剖析微服务治理的核心要素,结合具体案例,揭示其在提升系统稳定性、扩展性和敏捷性方面的关键作用,为读者提供一套切实可行的云原生微服务治理指南。 ####
|
10天前
|
缓存 负载均衡 监控
微服务架构下的接口性能优化策略####
在当今快速迭代的软件开发领域,微服务架构以其灵活性和可扩展性成为众多企业的首选。然而,随着系统复杂性的增加,接口性能问题日益凸显,成为制约用户体验与系统稳定性的关键因素。本文旨在探讨微服务架构下接口性能优化的有效策略,通过具体案例分析,揭示从代码层面到系统架构层面的全方位优化路径,为开发者提供实战指南。 ####
|
10天前
|
消息中间件 数据库 云计算
微服务架构下的数据库事务管理策略####
在微服务架构中,传统的单体应用被拆分为多个独立的服务单元,每个服务维护自己的数据库实例。这种设计提高了系统的可扩展性和灵活性,但同时也带来了分布式环境下事务管理的复杂性。本文探讨了微服务架构下数据库事务的挑战,并深入分析了几种主流的事务管理策略,包括Saga模式、两阶段提交(2PC)以及基于消息的最终一致性方案,旨在为开发者提供一套适应不同业务场景的事务处理框架。 ####
|
12天前
|
监控 安全 应用服务中间件
微服务架构下的API网关设计策略与实践####
本文深入探讨了在微服务架构下,API网关作为系统统一入口点的设计策略、实现细节及其在实际应用中的最佳实践。不同于传统的摘要概述,本部分将直接以一段精简的代码示例作为引子,展示一个基于NGINX的简单API网关配置片段,随后引出文章的核心内容,旨在通过具体实例激发读者兴趣,快速理解API网关在微服务架构中的关键作用及实现方式。 ```nginx server { listen 80; server_name api.example.com; location / { proxy_pass http://backend_service:5000;
|
12天前
|
存储 负载均衡 Kubernetes
混合云和多云策略:混合云架构设计详解
混合云和多云策略:混合云架构设计详解
44 1
|
10天前
|
设计模式 存储 缓存
微服务架构下的数据库设计策略
本文探讨了在微服务架构中进行数据库设计时,如何平衡数据的一致性、独立性与系统整体性能之间的关系。文章首先介绍了微服务架构的基本概念及其对数据库设计的影响,随后深入分析了三种主流的数据库设计模式——集中式、去中心化和混合模式,并结合实际案例讨论了它们的适用场景与优缺点。此外,还提出了一系列最佳实践建议,旨在帮助开发者更好地应对微服务环境下的数据管理挑战。