Go实战抢红包系统(三)-架构设计(上)

简介: Go实战抢红包系统(三)-架构设计(上)

1 代码架构的意义

image.png

代码架构就是详细设计中的核心内容!

1.1 代码架构承上启下,决定软件质量

◆ 承上

说明业务逻辑和业务领域模型

◆ 本身

保证代码有更好的可读性和可维护性、可扩展性

◆ 启下

承载代码运行的硬件部署架构

2 代码架构的操作

2.1 业务逻辑表达

向上沟通,提供交互入口

2.2 自身业务逻辑及技术实现

向下沟通,保存运行状态

3 代码架构的设计

先看一下DDD和分层架构的相关知识。

3.1 DDD

DDD(Domain Driven Design,领域驱动设计)作为一种软件开发方法,它可以帮助我们设计高质量的软件模型。在正确实现的情况下,我们通过DDD完成的设计恰恰就是软件的工作方式。


UL(Ubiquitous Language,通用语言)是团队共享的语言,是DDD中最具威力的特性之一。不管你在团队中的角色如何,只要你是团队的一员,你都将使用UL。由于UL的重要性,所以需要让每个概念在各自的上下文中是清晰无歧义的,于是DDD在战略设计上提出了模式BC(Bounded Context,限界上下文)。UL和BC同时构成了DDD的两大支柱,并且它们是相辅相成的,即UL都有其确定的上下文含义,而BC中的每个概念都有唯一的含义。


一个业务领域划分成若干个BC,它们之间通过Context Map进行集成。BC是一个显式的边界,领域模型便存在于这个边界之内。领域模型是关于某个特定业务领域的软件模型。通常,领域模型通过对象模型来实现,这些对象同时包含了数据和行为,并且表达了准确的业务含义。


从广义上来讲,领域即是一个组织所做的事情以及其中所包含的一切,表示整个业务系统。

由于“领域模型”包含了“领域”这个词,我们可能会认为应该为整个业务系统创建一个单一的、内聚的和全功能式的模型。然而,这并不是我们使用DDD的目标。正好相反,领域模型存在于BC内。

在微服务架构实践中,人们大量地使用了DDD中的概念和技术:


微服务中应该首先建立UL,然后再讨论领域模型。

一个微服务最大不要超过一个BC,否则微服务内会存在有歧义的领域概念。

一个微服务最小不要小于一个聚合,否则会引入分布式事务的复杂度。

微服务的划分过程类似于BC的划分过程,每个微服务都有一个领域模型。

微服务间的集成可以通过Context Map来完成,比如ACL(Anticorruption Layer,防腐层)。

微服务间最好采用Domain Event(领域事件)来进行交互,使得微服务可以保持松耦合。

下面介绍最为流行的分层代码架构

3.1 分层架构简介

分层架构的一个重要原则是每层只能与位于其下方的层发生耦合。

分层架构可以简单分为两种

  • 严格分层架构
    某层只能与位于其直接下方的层发生耦合
  • 松散分层架构
    松散分层架构中,则允许某层与它的任意下方层发生耦合。


分层架构的好处是显而易见的。首先,由于层间松散的耦合关系,使得我们可以专注于本层的设计,而不必关心其他层的设计,也不必担心自己的设计会影响其它层,对提高软件质量大有裨益。其次,分层架构使得程序结构清晰,升级和维护都变得十分容易,更改某层的具体实现代码,只要本层的接口保持稳定,其他层可以不必修改。即使本层的接口发生变化,也只影响相邻的上层,修改工作量小且错误可以控制,不会带来意外的风险。

要保持程序分层架构的优点,就必须坚持层间的松散耦合关系。设计程序时,应先划分出可能的层次,以及此层次提供的接口和需要的接口。设计某层时,应尽量保持层间的隔离,仅使用下层提供的接口。

3.2 分层架构的优点

单一职责

高内聚低耦合

提高复用性

开发人员可以只关注整个结构中的某一层。

可以很容易的用新的实现来替换原有层次的实现。

可以降低层与层之间的依赖。

有利于标准化。

利于各层逻辑的复用。

3.3 分层架构的缺陷

“金无足赤,人无完人”,分层架构也不可避免具有一些缺陷:


降低了系统的性能。这是显然的,因为增加了中间层,不过可以通过缓存机制来改善。

可能会导致级联的修改。这种修改尤其体现在自上而下的方向,不过可以通过依赖倒置来改善。


在每个BC中为了凸显领域模型,DDD中提出了分层架构模式


最基本的为三层架构

3.4 三层架构

表现层

业务逻辑层

数据持久层

但是职责定义并不明确,耦合度高

所以我们项目使用四层逻辑分层架构

3.5 逻辑分层架构

image.png

User Interface - 用户接口

人机交互,为用户界面层(或表示层),负责向用户显示信息和解释用户命令。这里指的用户可以是另一个计算机系统,不一定是使用用户界面的人。


Application - 应用层

定义软件要完成的任务,并且指挥表达领域概念的对象来解决问题。这一层所负责的工作对业务来说意义重大,也是与其它系统的应用层进行交互的必要渠道。应用层要尽量简单,不包含业务规则或者知识,而只为下一层中的领域对象协调任务,分配工作,使它们互相协作。它没有反映业务情况的状态,但是却可以具有另外一种状态,为用户或程序显示某个任务的进度。


Domain - 领域层(或模型层)

表达业务概念,业务状态信息以及业务规则。尽管保存业务状态的技术细节是由基础设施层实现的,但是反映业务情况的状态是由本层控制并且使用的。领域层是业务软件的核心,领域模型位于这一层。


Infrastructure - 基础实施层

向其他层提供通用的技术能力:为应用层传递消息,为领域层提供持久化机制,为用户界面层绘制屏幕组件,等等。基础设施层还能够通过架构框架来支持四个层次间的交互模式。


传统的四层架构都是限定型松散分层架构,即Infrastructure层的任意上层都可以访问该层(“L”型),而其它层遵守严格分层架构

在四层架构模式的实践中,对于分层的本地化定义主要为:

  • User Interface层主要是Restful消息处理,配置文件解析,等等。
  • Application层主要是多进程管理及调度,多线程管理及调度,多协程调度和状态机管理,等等。
  • Domain层主要是领域模型的实现,包括领域对象的确立,这些对象的生命周期管理及关系,领域服务的定义,领域事件的发布,等等。
  • Infrastructure层主要是业务平台,编程框架,第三方库的封装,基础算法,等等。


严格意义上来说,User Interface指的是用户界面,Restful消息和配置文件解析等处理应该放在Application层,User Interface层没有的话就空缺。但User Interface也可以理解为用户接口,所以将Restful消息和配置文件解析等处理放在User Interface层也行。


3.6 物理分层

魔改四层的六层架构

1.png

◆ 用户接口

◆ 应用服务层接口:

◆ 核心层

  • 应用服务实现层
  • 领域层
  • 数据访问层

◆ 基础设施层

架构设计图

image.png


目录
相关文章
|
30天前
|
监控 持续交付 API
深入理解微服务架构:构建高效、可扩展的系统
【10月更文挑战第14天】深入理解微服务架构:构建高效、可扩展的系统
80 0
|
5天前
|
传感器 算法 物联网
智能停车解决方案之停车场室内导航系统(二):核心技术与系统架构构建
随着城市化进程的加速,停车难问题日益凸显。本文深入剖析智能停车系统的关键技术,包括停车场电子地图编辑绘制、物联网与传感器技术、大数据与云计算的应用、定位技术及车辆导航路径规划,为读者提供全面的技术解决方案。系统架构分为应用层、业务层、数据层和运行环境,涵盖停车场室内导航、车位占用检测、动态更新、精准导航和路径规划等方面。
32 4
|
17天前
|
运维 NoSQL Java
后端架构演进:微服务架构的优缺点与实战案例分析
【10月更文挑战第28天】本文探讨了微服务架构与单体架构的优缺点,并通过实战案例分析了微服务架构在实际应用中的表现。微服务架构具有高内聚、低耦合、独立部署等优势,但也面临分布式系统的复杂性和较高的运维成本。通过某电商平台的实际案例,展示了微服务架构在提升系统性能和团队协作效率方面的显著效果,同时也指出了其带来的挑战。
55 4
|
15天前
|
前端开发 安全 关系型数据库
秒合约系统/开发模式规则/技术架构实现
秒合约系统是一种高频交易平台,支持快速交易、双向持仓和高杠杆。系统涵盖用户注册登录、合约创建与编辑、自动执行、状态记录、提醒通知、搜索筛选、安全权限管理等功能。交易规则明确,设有价格限制和强平机制,确保风险可控。技术架构采用高并发后端语言、关系型数据库和前端框架,通过智能合约实现自动化交易,确保安全性和用户体验。
|
23天前
|
存储 数据管理 调度
HarmonyOS架构理解:揭开鸿蒙系统的神秘面纱
【10月更文挑战第21天】华为的鸿蒙系统(HarmonyOS)以其独特的分布式架构备受关注。该架构包括分布式软总线、分布式数据管理和分布式任务调度。分布式软总线实现设备间的无缝连接;分布式数据管理支持跨设备数据共享;分布式任务调度则实现跨设备任务协同。这些特性为开发者提供了强大的工具,助力智能设备的未来发展。
76 1
|
1月前
|
存储 监控 负载均衡
|
1月前
|
传感器 存储 架构师
构建基于 IoT 的废物管理系统:软件架构师指南
构建基于 IoT 的废物管理系统:软件架构师指南
72 9
|
1月前
|
存储 Go 文件存储
M.2移动硬盘打造Win To Go系统:高效分区存储文件全攻略
【10月更文挑战第12天】本文详细介绍了如何使用M.2移动硬盘制作Win To Go系统。首先,需准备合适容量与接口类型的M.2硬盘及硬盘盒,并获取Windows镜像文件和分区工具。接着,通过Rufus软件将镜像写入硬盘。文中还提供了分区策略,包括系统分区(约80-120GB)、软件分区(根据需求设定)和数据分区(剩余空间),并指导如何使用DiskGenius或Windows自带工具进行分区。最后,强调了对各分区文件的有效管理和定期备份的重要性。
|
1月前
|
存储 前端开发 API
DDD领域驱动设计实战-分层架构
DDD分层架构通过明确各层职责及交互规则,有效降低了层间依赖。其基本原则是每层仅与下方层耦合,分为严格和松散两种形式。架构演进包括传统四层架构与改良版四层架构,后者采用依赖反转设计原则优化基础设施层位置。各层职责分明:用户接口层处理显示与请求;应用层负责服务编排与组合;领域层实现业务逻辑;基础层提供技术基础服务。通过合理设计聚合与依赖关系,DDD支持微服务架构灵活演进,提升系统适应性和可维护性。
|
1月前
|
存储 固态存储 Go
M.2移动硬盘打造Win To Go系统:高效分区存储文件全攻略
【10月更文挑战第11天】Win To Go 是一种将 Windows 系统安装在 M.2 移动硬盘上的技术,便于用户携带自定义系统跨设备使用。需准备高性能 M.2 硬盘及合适硬盘盒,并使用 DiskGenius 或 Rufus 进行分区与系统安装。系统分区用于安装 Windows,其余分区可根据需求存储工作或娱乐文件,便于管理和备份。
123 2