大厂Java面试-分布式架构演进史(上)

简介: 大厂Java面试-分布式架构演进史(上)

1 分布式架构的发展历史

1946 年情人节(2.14) , 世界上第一台电子数字计算机诞生在美 国宾夕法尼亚大学大学,它的名字是:ENIAC; 这台计算机占地 170 平米、重达 30 吨,每秒可进行 5000 次加法运算。 第一台电子计算机诞生以后,意味着一个日新月异的 IT 时代 的到来。一方面单台计算机的性能每年都在提升:从最早的 8 位 CPU 到现在的 64 位 CPU;从早期的 MB 级内存到现在的 GB 级别内存;从慢速的机械存储到现在的固态 SSD 硬盘存储。


tips:冯诺依曼模型

image.png

ENIAC 之后,电子计算机便进入了 IBM 主导的大型机时代,IBM 大 型机之父吉恩.阿姆达尔被认为是有史以来最伟大的计算机设计师 之一。1964 年 4 月 7 日,在阿姆达尔的带领下,历时三年,耗费 50 亿美元,第一台 IBM 大型机 SYSTEM/360 诞生。这使得 IBM 在 20 实际 50~60 年代统治整个大型计算机工业,奠定了 IBM 计算机 帝国的江山。


  • IBM 大型机曾支撑美国航天登月计划
  • IBM 主机一直服务于金融等核心行业的关键领域


由于高可靠性和超强的计算能力,即便在 X86 和云计算飞速发展的情况下,IBM 的大型机依然牢牢占据着一定的高端市场份额 20 世纪 80 年代,在大型机霸主的时代,计算机架构同时向两 个方向发展


  • 以 CISC (微处理器执行的计算机语言指令集) CPU 为架构 的价格便宜的面向个人的 PC
  • 以 RISC (精简指令集计算机) CPU 为架构的价格昂贵的面 向企业的小型 UNIX 服务器

2 分布式架构发展的里程碑

大型主机的出现。凭借着大型机超强的计算和 I/O 处理能力、 稳定性、安全性等,在很长一段时间内,大型机引领了计算机 行业及商业计算领域的发展。而集中式的计算机系统架构也成 为了主流。随着计算机的发展,这种架构越来越难以适应人们 的需求,比如说


由于大型主机的复杂性,导致培养一个能够熟练运维大型 主机的人的成本很高


大型主机很贵,一般只有土豪(政府、金融、电信)才能用得 起


单点问题,一台大型主机出现故障,那么整个系统将处于不 可用状态。而对于大型机的使用群体来说,这种不可用导致的 损失是非常大的


科技在进步,技术在进步。PC 机性能不断提升,很多企业 放弃大型机改用小型机及普通 PC 来搭建系统架构


3 阿里巴巴在 2009 年发起了一项"去 IOE"运动

IOE 指的是 IBM 小型机、Oracle 数据库、EMC 的高端存储 2009 年“去 IOE”战略透露,到 2013 年 5 月 17 日最后一台 IBM 小型机在支付宝下线。

3.1 为什么要去 IOE?

阿里巴巴过去一直采用的是 Oracle 数据库,并利用小型机和 高端存储设备提供高性能的数据处理和存储服务。随着业务的 不断发展,数据量和业务量呈爆发性增长,传统的集中式 Oracle 数据库架构在扩展性方面遭遇瓶颈。 传统的商业数据库软件(Oracle,DB2),多以集中式架构为主, 这些传统数据库软件的最大特点就是将所有的数据都集中在 一个数据库中,依靠大型高端设备来提供高处理能力和扩展性。 集中式数据库的扩展性主要采用向上扩展(Scale up)的方式, 通过增加 CPU,内存,磁盘等方式提高处理能力。这种集中式 数据库的架构,使得数据库成为了整个系统的瓶颈,已经越来越不适应海量数据对计算能力的巨大需求

4 分布式系统的意义

升级单机处理能力的性价比越来越低

单机的处理能力主要依靠 CPU、内存、磁盘。通过更换硬件 做垂直扩展的方式来提升性

能,成本会越来越高。


单机处理能力存在瓶颈

单机处理能力存在瓶颈,CPU、内存都会有自己的性能瓶颈, 也就是说就算你是土豪不惜成本去提升硬件,但是硬件的发 展速度和性能是有限制的。


稳定性和可用性这两个指标很难达到

单机系统存在可用性和稳定性的问题,这两个指标又是我们 必须要去解决的

5 分布式架构的常见概念

5.1 集群

小饭店原来只有一个厨师,切菜洗菜备料炒菜全干。后来客人 多了,厨房一个厨师忙不过来,又请了个厨师,两个厨师都能 炒一样的菜,这两个厨师的关系是集群

image.png

5.2 分布式

为了让厨师专心炒菜,把菜做到极致,又请了个配菜师负责切 菜,备菜,备料,厨师和配菜师的关系是分布式,一个配菜师 也忙不过来了,又请了个配菜师,两个配菜师关系是集群

image.png

5.3 节点

节点是指一个可以独立按照分布式协议完成一组逻辑的程序 个体。在具体的项目中,一个节点表示的是一个操作系统上的 进程。

5.4 副本机制

副本(replica/copy)指在分布式系统中为数据或服务提供的冗 余。 数据副本指在不同的节点上持久化同一份数据,当出现某一个 节点的数据丢失时,可以从副本上读取到数据。数据副本是分 布式系统中解决数据丢失问题的唯一手段。 服务副本表示多个节点提供相同的服务,通过主从关系来实现 服务的高可用方案

5.5 中间件

中间件位于操作系统提供的服务之外,又不属于应用,他是位 于应用和系统层之间为开发者方便的处理通信、输入输出的一 类软件,能够让用户关心自己应用的部分。



目录
相关文章
|
1月前
|
Java 数据库
在Java中使用Seata框架实现分布式事务的详细步骤
通过以上步骤,利用 Seata 框架可以实现较为简单的分布式事务处理。在实际应用中,还需要根据具体业务需求进行更详细的配置和处理。同时,要注意处理各种异常情况,以确保分布式事务的正确执行。
|
1月前
|
消息中间件 Java Kafka
在Java中实现分布式事务的常用框架和方法
总之,选择合适的分布式事务框架和方法需要综合考虑业务需求、性能、复杂度等因素。不同的框架和方法都有其特点和适用场景,需要根据具体情况进行评估和选择。同时,随着技术的不断发展,分布式事务的解决方案也在不断更新和完善,以更好地满足业务的需求。你还可以进一步深入研究和了解这些框架和方法,以便在实际应用中更好地实现分布式事务管理。
|
5天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
43 11
|
7天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
33 11
|
8天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
43 11
|
10天前
|
自然语言处理 负载均衡 Kubernetes
分布式系统架构2:服务发现
服务发现是分布式系统中服务实例动态注册和发现机制,确保服务间通信。主要由注册中心和服务消费者组成,支持客户端和服务端两种发现模式。注册中心需具备高可用性,常用框架有Eureka、Zookeeper、Consul等。服务注册方式包括主动注册和被动注册,核心流程涵盖服务注册、心跳检测、服务发现、服务调用和注销。
46 12
|
22天前
|
消息中间件 架构师 数据库
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
45岁资深架构师尼恩分享了一篇关于分布式事务的文章,详细解析了如何在10Wqps高并发场景下实现分布式事务。文章从传统单体架构到微服务架构下分布式事务的需求背景出发,介绍了Seata这一开源分布式事务解决方案及其AT和TCC两种模式。随后,文章深入探讨了经典ebay本地消息表方案,以及如何使用RocketMQ消息队列替代数据库表来提高性能和可靠性。尼恩还分享了如何结合延迟消息进行事务数据的定时对账,确保最终一致性。最后,尼恩强调了高端面试中需要准备“高大上”的答案,并提供了多个技术领域的深度学习资料,帮助读者提升技术水平,顺利通过面试。
本地消息表事务:10Wqps 高并发分布式事务的 终极方案,大厂架构师的 必备方案
|
4天前
|
消息中间件 NoSQL Java
面试官必问的分布式锁面试题,你答得上来吗?
本文介绍了分布式锁的概念、实现方式及其在项目中的应用。首先通过黄金圈法则分析了分布式锁的“为什么”、“怎么做”和“做什么”。接着详细讲解了使用 Redisson 和 SpringBoot + Lettuce 实现分布式锁的具体方法,包括代码示例和锁续期机制。最后解释了 Lua 脚本的作用及其在 Redis 中的应用,强调了 Lua 保证操作原子性的重要性。文中还提及了 Redis 命令组合执行时的非原子性问题,并提供了 Lua 脚本实现分布式锁的示例。 如果你对分布式锁感兴趣或有相关需求,欢迎关注+点赞,必回关!
16 2
|
27天前
|
Java 程序员
Java社招面试题:& 和 && 的区别,HR的套路险些让我翻车!
小米,29岁程序员,分享了一次面试经历,详细解析了Java中&和&&的区别及应用场景,展示了扎实的基础知识和良好的应变能力,最终成功获得Offer。
67 14
|
18天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
33 1

热门文章

最新文章