互联网大厂缓存与数据库的双写一致性解决方案

简介: 互联网大厂缓存与数据库的双写一致性解决方案

用缓存,就会涉及到缓存与数据库双存储的双写,双写就一定会有数据一致性问题。


若系统不是严格要求缓存/数据库必须一致性,缓存可以稍微和数据库偶尔不一致,最好不要做双写。

读请求和写请求串行化,串到一个内存队列里去,这样就可以保证一定不会出现不一致。

串行化后,就会导致系统吞吐量骤降,就需要比正常情况下多几倍的机器去支撑线上环境请求。

Cache Aside Pattern缓存+数据库读写模式

  1. 读时,先读缓存,缓存没有,就读DB,然后取出数据后放入缓存,同时返回响应
  2. 更新时,先删缓存,再更新DB

为什么是删缓存,而不是更新缓存?

很多时候,复杂缓存场景,因为缓存有的时候,不单是DB中直接取出来的值。

比如商品详情页系统,修改库存,只是修改某表的某些字段,但要真正把影响的最终库存计算出,可能还需从其他表查询一些数据,进行一些运算,才能计出。

现在最新的库存是多少,然后才能将库存更新到缓存。


更新缓存的代价很高。

是不是每次修改DB,都必须更新对应缓存?

简单场景可以这样,但较复杂缓存数据计算场景,就不是了。


若你频繁修改一个缓存涉及的多个表,那么这个缓存会被频繁的更新,频繁的更新缓存


但问题在于,这个缓存到底会不会被频繁访问到?

比如,一个缓存涉及的表字段,在1min内就修改20次或100次,那么缓存更新20/100次;但该缓存在1min内就被读取了1次,有大量冷数据。


20%的数据,占用了80%的访问量。


若你只是删除缓存,那1min内,该缓存不过重新计算一次,开销大幅度降低。


每次请求过来,就只是删除缓存,然后修改DB,若该缓存在1min内只被访问1次,那么只有那1次缓存要被重新计算,需要用到缓存才去计算缓存。


删除缓存,而非更新缓存,也是一种惰性延迟计算思想,不要每次都重做复杂计算,不管它会不会用到,而是让它到需要被使用时再重新计算。


查询一个部门,部门带了一个员工的list,没必要每次查询部门,都把里面的1000个员工的数据也同时查出来。

80%的情况,查这个部门,就只是要访问这个部门的信息就可以了

先查部门,同时要访问里面的员工,那么这个时候只有在你要访问里面的员工的时候,才会去数据库里面查询1000个员工。

高并发场景下的缓存+数据库双写不一致

实时性比较高的数据缓存,就是库存服务。


库存可能会修改,每次修改都要去更新这个缓存数据; 每次库存的数据,在缓存中一旦过期,或者是被清理掉了,前端的nginx服务都会发送请求给库存服务,去获取相应的数据。

库存这一块,写数据库的时候,直接更新redis缓存。

数据库与缓存双写,数据不一致的问题

简单场景

  • 先修改数据库,再删除缓存
    如果缓存删除失败,那么会导致数据库是新数据,缓存是旧数据,数据不一致
  • 先删除缓存,再修改数据库
    如果删除缓存成功,修改数据库失败,那么数据库中是旧数据,缓存空,数据不会不一致。
    因为读时缓存没有,则读数据库中旧数据,然后更新到缓存。

复杂场景

数据发生变更,先删了缓存,然后要去修改DB,此时还没修改

一个请求突然过来,去读缓存,发现缓存空,转而去查询DB,查到修改前的旧数据,放入缓存。

数据变更的程序完成了数据库的修改。

结果,数据库和缓存中的数据不一致!

为什么高并发场景下,缓存会出现这问题?

只有在对一个数据在并发读写时,才可能会出现这种问题。

若每天上亿的流量,每秒几万QPS,每秒只要有数据更新请求,就可能会出现数据库+缓存不一致。

数据库 & 缓存更新与读取 异步串行化

更新数据的时候,根据数据的唯一标识,将操作路由之后,发送到一个JVM内部的队列中。


读数据的时候,如果发现数据不在缓存中,那么将重读数据+更新缓存,根据唯一标识路由之后,也发送同一个JVM内部的队列中。


一个队列对应一个工作线程。


每个工作线程串行拿到对应的操作,然后一条一条的执行。这样的话,一个数据变更的操作,先执行删除缓存,然后再更新数据库,但是还没完成更新。

此时如果一个读请求过来,读到了空缓存,则可以先将缓存更新的请求发送到队列中,此时会在队列中积压,然后同步等待缓存更新完成


一个队列中,其实多个更新缓存请求串在一起是没意义的,因此可以做过滤。如果发现队列中已经有一个更新缓存的请求了,那么就不用再放个更新请求操作进去了,直接等待前面的更新操作请求完成即可。


待那个队列对应的工作线程完成了上一个操作的数据库的修改之后,才会去执行下一个操作,也就是缓存更新的操作,此时会从数据库中读取最新的值,然后写入缓存中


  • 如果请求还在等待时间范围内,轮询发现可以取到值了,那么就直接返回
  • 如果请求等待的时间超过一定时长,那么这一次直接从数据库中读取当前的旧值

高并发场景下,该解决方案注意

读请求长时阻塞

由于读请求进行了轻度异步化,所以一定要注意读超时的问题,每个读请求必须在超时时间范围内返回


该解决方案,最大风险点在于,可能数据更新很频繁,导致队列中积压了大量更新操作,然后读请求会发生大量的超时,最后导致大量的请求直接走数据库


务必通过一些模拟真实的测试,看看更新数据的频繁是怎样的


另外一点,因为一个队列中,可能会积压针对多个数据项的更新操作,因此需要根据自己的业务情况进行测试,可能需要部署多个服务,每个服务分摊一些数据的更新操作


如果一个内存队列里居然会挤压100个商品的库存修改操作,每隔库存修改操作要耗费10ms区完成,那么最后一个商品的读请求,可能等待10 * 100 = 1000ms = 1s后,才能得到数据


这个时候就导致读请求的长时阻塞


一定要做根据实际业务系统的运行情况,去进行一些压力测试,和模拟线上环境,去看看最繁忙的时候,内存队列可能会挤压多少更新操作,可能会导致最后一个更新操作对应的读请求,会hang多少时间,如果读请求在200ms返回,如果你计算过后,哪怕是最繁忙的时候,积压10个更新操作,最多等待200ms,那还可以的


如果一个内存队列可能积压的更新操作特别多,那么你就要加机器,让每个机器上部署的服务实例处理更少的数据,那么每个内存队列中积压的更新操作就会越少


其实根据之前的项目经验,一般来说数据的写频率是很低的,因此实际上正常来说,在队列中积压的更新操作应该是很少的


针对读高并发,读缓存架构的项目,一般写请求相对读来说,是非常非常少的,每秒的QPS能到几百就不错了


一秒,500的写操作,5份,每200ms,就100个写操作


单机器,20个内存队列,每个内存队列,可能就积压5个写操作,每个写操作性能测试后,一般在20ms左右就完成


那么针对每个内存队列中的数据的读请求,也就最多hang一会儿,200ms以内肯定能返回了


写QPS扩大10倍,但是经过刚才的测算,就知道,单机支撑写QPS几百没问题,那么就扩容机器,扩容10倍的机器,10台机器,每个机器20个队列,200个队列


大部分的情况下,应该是这样的,大量的读请求过来,都是直接走缓存取到数据的


少量情况下,可能遇到读跟数据更新冲突的情况,如上所述,那么此时更新操作如果先入队列,之后可能会瞬间来了对这个数据大量的读请求,但是因为做了去重的优化,所以也就一个更新缓存的操作跟在它后面


等数据更新完了,读请求触发的缓存更新操作也完成,然后临时等待的读请求全部可以读到缓存中的数据


(2)读请求并发量过高

这里还必须做好压力测试,确保恰巧碰上上述情况的时候,还有一个风险,就是突然间大量读请求会在几十毫秒的延时hang在服务上,看服务能不能抗的住,需要多少机器才能抗住最大的极限情况的峰值


但是因为并不是所有的数据都在同一时间更新,缓存也不会同一时间失效,所以每次可能也就是少数数据的缓存失效了,然后那些数据对应的读请求过来,并发量应该也不会特别大


按1:99的比例计算读和写的请求,每秒5万的读QPS,可能只有500次更新操作


如果一秒有500的写QPS,那么要测算好,可能写操作影响的数据有500条,这500条数据在缓存中失效后,可能导致多少读请求,发送读请求到库存服务来,要求更新缓存


一般来说,1:1,1:2,1:3,每秒钟有1000个读请求,会hang在库存服务上,每个读请求最多hang多少时间,200ms就会返回


在同一时间最多hang住的可能也就是单机200个读请求,同时hang住


单机hang200个读请求,还是ok的

1:20,每秒更新500条数据,这500秒数据对应的读请求,会有20 * 500 = 1万

1万个读请求全部hang在库存服务上,就死定了

(3)多服务实例部署的请求路由

可能这个服务部署了多个实例,那么必须保证说,执行数据更新操作,以及执行缓存更新操作的请求,都通过nginx服务器路由到相同的服务实例上

(4)热点商品的路由问题,导致请求的倾斜

万一某个商品的读写请求特别高,全部打到相同的机器的相同的队列里面去了,可能造成某台机器的压力过大

就是说,因为只有在商品数据更新的时候才会清空缓存,然后才会导致读写并发,所以更新频率不是太高的话,这个问题的影响并不是特别大,但是的确可能某些机器的负载会高一些。

目录
相关文章
|
6天前
|
缓存 NoSQL Serverless
云数据库Tair:从稳定低延时缓存到 Serverless KV
本次分享聚焦云数据库Tair的使用,涵盖三部分内容:1) Tair概览,介绍其作为稳定低延时缓存及KV数据库服务的特点和优势;2) 稳定低延迟缓存技术,探讨如何通过多线程处理、优化内核等手段提升性能与稳定性;3) 从缓存到Serverless KV的演进,特别是在AI大模型时代,Tair如何助力在线服务和推理缓存加速。Tair在兼容性、性能优化、扩缩容及AI推理加速方面表现出色,满足不同场景需求。
|
27天前
|
缓存 物联网 数据库
InfluxDB vs TDengine :2025 年了,谁家用的数据库还不能高效读缓存?
在工业互联网和物联网的大数据应用场景中,实时数据的写入和查询性能至关重要。如何快速获取最新设备状态并实时处理数据,直接影响到业务的高效运转。本文将深入分析 TDengine 和 InfluxDB 在缓存机制上的差异,帮助读者更好地理解这两款主流时序数据库在性能优化方面的优劣。
59 1
|
2月前
|
运维 监控 关系型数据库
数据库管理中的自动化运维:挑战与解决方案
数据库管理中的自动化运维:挑战与解决方案
|
2月前
|
算法 安全 数据库
数据库死锁的解决方案有哪些?
【10月更文挑战第28天】数据库死锁是数据库管理中的一个常见问题
127 15
|
2月前
|
缓存 NoSQL 数据库
运用云数据库 Tair 构建缓存为应用提速,完成任务得苹果音响、充电套装等好礼!
本活动将带大家了解云数据库 Tair(兼容 Redis),通过体验构建缓存以提速应用,完成任务,即可领取罗马仕安卓充电套装,限量1000个,先到先得。邀请好友共同参与活动,还可赢取苹果 HomePod mini、小米蓝牙耳机等精美好礼!
|
2月前
|
缓存 NoSQL 关系型数据库
mysql和缓存一致性问题
本文介绍了五种常见的MySQL与Redis数据同步方法:1. 双写一致性,2. 延迟双删策略,3. 订阅发布模式(使用消息队列),4. 基于事件的缓存更新,5. 缓存预热。每种方法的实现步骤、优缺点均有详细说明。
113 3
|
3月前
|
关系型数据库 MySQL 数据库
一个 MySQL 数据库死锁的案例和解决方案
本文介绍了一个 MySQL 数据库死锁的案例和解决方案。
195 3
|
3月前
|
缓存 监控 算法
小米面试题:多级缓存一致性问题怎么解决
【10月更文挑战第23天】在现代分布式系统中,多级缓存架构因其能够显著提高系统性能和响应速度而被广泛应用。
89 3
|
3月前
|
缓存 弹性计算 NoSQL
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
新一期陪跑班开课啦!阿里云专家手把手带你体验高并发下利用云数据库缓存实现极速响应
|
3月前
|
NoSQL 数据管理 关系型数据库
利用阿里云的尖端数据库解决方案增强游戏数据管理
利用阿里云的尖端数据库解决方案增强游戏数据管理