DL之DSSD:DSSD算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

简介: DL之DSSD:DSSD算法的简介(论文介绍)、架构详解、案例应用等配图集合之详细攻略

DSSD算法的简介(论文介绍)


       DSSD,是在SSD上做的改进,即Deconvolutional Single Shot Detector,反卷积单步骤探测器。


Abstract  

     The main contribution of this paper is an approach for  introducing additional context into state-of-the-art general  object detection. To achieve this we first combine a state-ofthe-art  classifier (Residual-101 [14]) with a fast detection  framework (SSD [18]). We then augment SSD+Residual101  with deconvolution layers to introduce additional largescale  context in object detection and improve accuracy,  especially for small objects, calling our resulting system  DSSD for deconvolutional single shot detector. While these  two contributions are easily described at a high-level, a  naive implementation does not succeed. Instead we show  that carefully adding additional stages of learned transformations,  specifically a module for feed-forward connections  in deconvolution and a new output module, enables this new  approach and forms a potential way forward for further detection  research. Results are shown on both PASCAL VOC  and COCO detection. Our DSSD with 513 × 513 input  achieves 81.5% mAP on VOC2007 test, 80.0% mAP on  VOC2012 test, and 33.2% mAP on COCO, outperforming  a state-of-the-art method R-FCN [3] on each dataset.

     本文的主要贡献是将附加上下文引入到最先进的一般对象检测中。为了实现这一点,我们首先结合了一个最先进的分类器(Residual-101[14])和一个快速检测框架(SSD[18])。然后,我们使用反褶积层来增加SSD+Residual101,以在目标检测中引入额外的大范围上下文,并提高精度,特别是对于小对象,调用我们得到的系统DSSD来实现反卷积单镜头检测器。虽然这两个贡献很容易在高层进行描述,但是一个简单的实现是不会成功的。相反,我们展示了详细添加额外的学习转换阶段,特别是反褶积中的前馈连接模块和一个新的输出模块,使这种新方法成为可能,并为进一步的检测研究形成了一个潜在的前进方向。结果表明,PASCAL VOC和COCO 检测。我们的513×513输入的DSSD在VOC2007测试中实现了81.5%的mAP,在VOC2012测试中实现了80.0%的mAP,在COCO上实现了33.2%的mAP,在每个数据集上都优于目前最先进的R-FCN[3]方法。

Conclusion  

     We propose an approach for adding context to a stateof-the-art  object detection framework, and demonstrate its  effectiveness on benchmark datasets. While we expect  many improvements in finding more efficient and effective  ways to combine the features from the encoder and decoder,  our model still achieves state-of-the-art detection results on  PASCAL VOC and COCO. Our new DSSD model is able  to outperform the previous SSD framework, especially on  small object or context specific objects, while still preserving  comparable speed to other detectors. While we only apply  our encoder-decoder hourglass model to the SSD framework,  this approach can be applied to other detection methods,  such as the R-CNN series methods [12, 11, 24], as well.

     我们提出了一种将上下文添加到最先进的对象检测框架的方法,并在基准数据集上证明了它的有效性。虽然我们期望在寻找更有效和更有效的方法来结合编码器和解码器的特性方面有许多改进,但我们的模型仍然在PASCAL VOC和COCO上实现了最先进的检测结果。我们的新DSSD模型能够超越以前的SSD框架,特别是在小对象或特定上下文对象上,同时仍然保持与其他检测器相当的速度。虽然我们只将我们的编解码器沙漏模型应用于SSD框架,但是这种方法也可以应用于其他检测方法,比如R-CNN系列方法[12,11,24]。


论文

Cheng-Yang Fu , Wei Liu , Ananth Ranga, AmbrishTyagi , Alexander C. Berg .

DSSD : Deconvolutional Single Shot Detector,CVPR 2017

https://arxiv.org/abs/1701.06659



1、DSSD框架结构


      残差网络上的SSD和DSSD网络:蓝色模块是SSD框架中添加的层,称之为SSD层。在下图中,红色图层是DSSD层。

image.png




2、DSSD模型的特点、贡献


SSD算法对小目标不够鲁棒(会出现误检和漏检);最主要的原因是浅层特征图的表示能力不够强。DSSD算法的核心思想就是提高浅层的表示能力。

DSSD在原来的SSD模型上主要作了两大改进:

一是替换掉VGG,而改用了Resnet-101作为特征提取网络并在对不同尺度的特征图进行默认框检测时使用了更新的检测单元;

二则在网络的后端使用了多个反卷积层(deconvolution layers)以有效地扩展低维度信息的上下文信息(contextual information) ,从而有效地改善了小尺度目标的检测。





DSSD算法的架构详解


更新……






DSSD算法的案例应用


更新……




 


相关文章
|
3月前
|
存储 机器学习/深度学习 编解码
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
本文提出统一相位正交啁啾分复用(UP-OCDM)方案,利用循环矩阵特性设计两种低复杂度均衡算法:基于带状近似的LDL^H分解和基于BEM的迭代LSQR,将复杂度由$O(N^3)$降至$O(NQ^2)$或$O(iNM\log N)$,在双选择性信道下显著提升高频谱效率与抗多普勒性能。
255 0
双选择性信道下正交啁啾分复用(OCDM)的低复杂度均衡算法研究——论文阅读
|
5月前
|
机器学习/深度学习 算法 数据挖掘
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
没发论文的注意啦!重磅更新!GWO-BP-AdaBoost预测!灰狼优化、人工神经网络与AdaBoost集成学习算法预测研究(Matlab代码实现)
200 0
|
4月前
|
传感器 资源调度 算法
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
本文提出一种多子带相干累积(MSCA)算法,通过引入空带和子带相干处理,解决DDMA-MIMO雷达的多普勒模糊与能量分散问题。该方法在低信噪比下显著提升检测性能,实测验证可有效恢复目标速度,适用于车载雷达高精度感知。
627 4
DDMA-MIMO雷达多子带相干累积目标检测算法——论文阅读
|
4月前
|
机器学习/深度学习 算法 算法框架/工具
256KB内存约束下的设备端训练:算法与系统协同设计——论文解读
MIT与MIT-IBM Watson AI Lab团队提出一种创新方法,在仅256KB SRAM和1MB Flash的微控制器上实现深度神经网络训练。该研究通过量化感知缩放(QAS)、稀疏层/张量更新及算子重排序等技术,将内存占用降至141KB,较传统框架减少2300倍,首次突破设备端训练的内存瓶颈,推动边缘智能发展。
348 6
|
5月前
|
人工智能 算法 安全
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
【博士论文】基于局部中心量度的聚类算法研究(Matlab代码实现)
187 0
|
11月前
|
人工智能 编解码 算法
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
本文介绍了通义灵码2.0 AI程序员在嵌入式开发中的实战应用。通过安装VS Code插件并登录阿里云账号,用户可切换至DeepSeek V3模型,利用其强大的代码生成能力。实战案例中,AI程序员根据自然语言描述快速生成了C语言的base64编解码算法,包括源代码、头文件、测试代码和CMake编译脚本。即使在编译错误和需求迭代的情况下,AI程序员也能迅速分析问题并修复代码,最终成功实现功能。作者认为,通义灵码2.0显著提升了开发效率,打破了编程语言限制,是AI编程从辅助工具向工程级协同开发转变的重要标志,值得开发者广泛使用。
8964 71
DeepSeek加持的通义灵码2.0 AI程序员实战案例:助力嵌入式开发中的算法生成革新
|
9月前
|
机器学习/深度学习 人工智能 JSON
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
Paper2Code是由韩国科学技术院与DeepAuto.ai联合开发的多智能体框架,通过规划、分析和代码生成三阶段流程,将机器学习论文自动转化为可执行代码仓库,显著提升科研复现效率。
1258 19
这个AI把arXiv变成代码工厂,快速复现顶会算法!Paper2Code:AI论文自动转代码神器,多智能体框架颠覆科研复现
|
12月前
|
Java 网络安全 开发工具
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
通过本文,读者可以深入了解Git的核心概念和实际操作技巧,提升版本管理能力。
|
机器学习/深度学习 自然语言处理 算法
调研180多篇论文,这篇综述终于把大模型做算法设计理清了
《A Systematic Survey on Large Language Models for Algorithm Design》综述了过去三年大型语言模型(LLMs)在算法设计中的应用。LLMs通过自然语言处理技术,助力生成、优化和验证算法,在优化、机器学习、数学推理等领域展现出广泛应用前景。尽管存在资源需求高、结果不确定等挑战,LLMs仍为算法设计带来新机遇。论文地址:https://arxiv.org/abs/2410.14716。
416 14
|
存储 算法 搜索推荐
这些算法在实际应用中有哪些具体案例呢
【10月更文挑战第19天】这些算法在实际应用中有哪些具体案例呢
385 1