ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)(一)

简介: ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)

References


1、国外格式


[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] T. Cover  P. Hart, "Nearest neighbor pattern classification," Journal IEEE Transactions on Information Theory archive Volume 13 Issue 1, January 1967


2、国内格式


[1] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors.[J]. 1986, 323(6088):399-421.

[2] Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13(1):21-27[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.

[3] Daral N. Histograms of Oriented Gradients for Human Detection[J]. Proc. of CVPR, 2005, 2005.

[3.1] Histograms of Oriented Gradients for Human Detection. Dalai,N,B.Triggs. Computer Vision and Pattern Recognition, 2005.CVPR 2005.IEEE Computer Society Conference on . 2005

[4] Kazemi V, Sullivan J. One Millisecond Face Alignment with an Ensemble of Regression Trees[C] Computer Vision and Pattern Recognition. IEEE, 2014:1867-1874.


[5] David J. Hand and Robert J. Till( 2001). A Simple Generalization of the Area Under the ROC Curve for Multiple Class Classification Problems . Machine Learning , 45(2), 171 – 186 .



一、综合方向


周志华,机器学习,清华大学出版社,2016

李航,统计学习方法,清华大学出版社,2012

Scikit-learn,https://scikit-learn.org/stable/index.html

Qcon 2017 feature engineering by Gabriel Moreira

Thomas M.Cover, JoyA. Thomas. Elementsof InformationTheory. 2006

Christopher M.Bishop. Pattern Recognition and Machine Learning. Springer-Verlag. 2006



二、预测方向


1、ML预测类参考文章


1. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

2. Leo Breiman. (2001). “Random Forests.” Machine Learning , 45 (1): 5–32.doi:10.1023/A:10109334043243. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

3. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

4. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

5. L. Breiman, “Bagging predictors,” http://statistics.berkeley.edu/sites/default/files/techreports/421.pdf

6. Tin Ho. (1998). “The Random Subspace Method for Constructing DecisionForests.”IEEE Transactions on Pattern Analysis and Machine Intelligence ,20 (8): 832–844.doi:10.1109/34.709601

7. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

8. J. H. Friedman. “Stochastic Gradient Boosting,”https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

9. sklearn documentation for GradientBoostingRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

10. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

11. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

12. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

13. sklearn documentation for RandomForestClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

14. sklearn documentation for GradientBoostingClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html




相关文章
|
21天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
60 3
|
1月前
|
机器学习/深度学习 并行计算 PyTorch
【机器学习】探索GRU:深度学习中门控循环单元的魅力
【机器学习】探索GRU:深度学习中门控循环单元的魅力
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
58 0
|
11天前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
38 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
1月前
|
机器学习/深度学习 人工智能 算法
揭开深度学习与传统机器学习的神秘面纱:从理论差异到实战代码详解两者间的选择与应用策略全面解析
【10月更文挑战第10天】本文探讨了深度学习与传统机器学习的区别,通过图像识别和语音处理等领域的应用案例,展示了深度学习在自动特征学习和处理大规模数据方面的优势。文中还提供了一个Python代码示例,使用TensorFlow构建多层感知器(MLP)并与Scikit-learn中的逻辑回归模型进行对比,进一步说明了两者的不同特点。
66 2
|
1月前
|
机器学习/深度学习 算法 决策智能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
【机器学习】揭秘深度学习优化算法:加速训练与提升性能
|
1月前
|
机器学习/深度学习 TensorFlow 算法框架/工具
探索机器学习:从线性回归到深度学习
在这篇文章中,我们将一起踏上一场激动人心的旅程,穿越机器学习的广阔天地。我们将从最基本的线性回归开始,逐步深入到复杂的深度学习模型。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和深入的理解。让我们一起探索这个充满无限可能的世界吧!
|
1月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
65 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
52 0
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能的未来:从机器学习到深度学习的演进
【10月更文挑战第8天】人工智能的未来:从机器学习到深度学习的演进
64 0

热门文章

最新文章

下一篇
无影云桌面