ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)(一)

简介: ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)

References


1、国外格式


[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] T. Cover  P. Hart, "Nearest neighbor pattern classification," Journal IEEE Transactions on Information Theory archive Volume 13 Issue 1, January 1967


2、国内格式


[1] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors.[J]. 1986, 323(6088):399-421.

[2] Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13(1):21-27[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.

[3] Daral N. Histograms of Oriented Gradients for Human Detection[J]. Proc. of CVPR, 2005, 2005.

[3.1] Histograms of Oriented Gradients for Human Detection. Dalai,N,B.Triggs. Computer Vision and Pattern Recognition, 2005.CVPR 2005.IEEE Computer Society Conference on . 2005

[4] Kazemi V, Sullivan J. One Millisecond Face Alignment with an Ensemble of Regression Trees[C] Computer Vision and Pattern Recognition. IEEE, 2014:1867-1874.


[5] David J. Hand and Robert J. Till( 2001). A Simple Generalization of the Area Under the ROC Curve for Multiple Class Classification Problems . Machine Learning , 45(2), 171 – 186 .



一、综合方向


周志华,机器学习,清华大学出版社,2016

李航,统计学习方法,清华大学出版社,2012

Scikit-learn,https://scikit-learn.org/stable/index.html

Qcon 2017 feature engineering by Gabriel Moreira

Thomas M.Cover, JoyA. Thomas. Elementsof InformationTheory. 2006

Christopher M.Bishop. Pattern Recognition and Machine Learning. Springer-Verlag. 2006



二、预测方向


1、ML预测类参考文章


1. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

2. Leo Breiman. (2001). “Random Forests.” Machine Learning , 45 (1): 5–32.doi:10.1023/A:10109334043243. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

3. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

4. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

5. L. Breiman, “Bagging predictors,” http://statistics.berkeley.edu/sites/default/files/techreports/421.pdf

6. Tin Ho. (1998). “The Random Subspace Method for Constructing DecisionForests.”IEEE Transactions on Pattern Analysis and Machine Intelligence ,20 (8): 832–844.doi:10.1109/34.709601

7. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

8. J. H. Friedman. “Stochastic Gradient Boosting,”https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

9. sklearn documentation for GradientBoostingRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

10. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

11. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

12. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

13. sklearn documentation for RandomForestClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

14. sklearn documentation for GradientBoostingClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html




相关文章
|
11月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
303 3
|
5月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
|
9月前
|
机器学习/深度学习 数据采集 监控
深度学习中模型训练的过拟合与欠拟合问题
在机器学习和深度学习中,过拟合和欠拟合是影响模型泛化能力的两大常见问题。过拟合指模型在训练数据上表现优异但在新数据上表现差,通常由模型复杂度过高、数据不足或质量差引起;欠拟合则指模型未能充分学习数据中的模式,导致训练和测试数据上的表现都不佳。解决这些问题需要通过调整模型结构、优化算法及数据处理方法来找到平衡点,如使用正则化、Dropout、早停法、数据增强等技术防止过拟合,增加模型复杂度和特征选择以避免欠拟合,从而提升模型的泛化性能。
|
12月前
|
机器学习/深度学习 并行计算 PyTorch
【机器学习】探索GRU:深度学习中门控循环单元的魅力
【机器学习】探索GRU:深度学习中门控循环单元的魅力
|
12月前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能的未来:机器学习与深度学习的融合之旅
【9月更文挑战第35天】在这篇文章中,我们将深入探讨人工智能的两大支柱——机器学习和深度学习。我们将通过代码示例和实际应用案例,揭示它们如何相互补充,共同推动AI技术的发展。无论你是初学者还是有经验的开发者,这篇文章都将为你提供宝贵的见解和启示。
213 0
|
10月前
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
171 3
|
11月前
|
机器学习/深度学习 人工智能 TensorFlow
基于TensorFlow的深度学习模型训练与优化实战
基于TensorFlow的深度学习模型训练与优化实战
470 3
|
11月前
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
388 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
机器学习/深度学习 算法 TensorFlow
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
交通标志识别系统。本系统使用Python作为主要编程语言,在交通标志图像识别功能实现中,基于TensorFlow搭建卷积神经网络算法模型,通过对收集到的58种常见的交通标志图像作为数据集,进行迭代训练最后得到一个识别精度较高的模型文件,然后保存为本地的h5格式文件。再使用Django开发Web网页端操作界面,实现用户上传一张交通标志图片,识别其名称。
464 7
交通标志识别系统Python+卷积神经网络算法+深度学习人工智能+TensorFlow模型训练+计算机课设项目+Django网页界面
|
10月前
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。

热门文章

最新文章