ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)(一)-阿里云开发者社区

开发者社区> 人工智能> 正文
登录阅读全文

ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)(一)

简介: ML/DL之Paper:机器学习、深度学习常用的国内/国外引用(References)参考文献集合(建议收藏,持续更新)

References


1、国外格式


[1] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representations by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986.

[2] T. Cover  P. Hart, "Nearest neighbor pattern classification," Journal IEEE Transactions on Information Theory archive Volume 13 Issue 1, January 1967


2、国内格式


[1] Rumelhart D E, Hinton G E, Williams R J. Learning representations by back-propagating errors.[J]. 1986, 323(6088):399-421.

[2] Cover T M, Hart P E. Nearest neighbor pattern classification. IEEE Trans Inf Theory IT-13(1):21-27[J]. IEEE Transactions on Information Theory, 1967, 13(1):21-27.

[3] Daral N. Histograms of Oriented Gradients for Human Detection[J]. Proc. of CVPR, 2005, 2005.

[3.1] Histograms of Oriented Gradients for Human Detection. Dalai,N,B.Triggs. Computer Vision and Pattern Recognition, 2005.CVPR 2005.IEEE Computer Society Conference on . 2005

[4] Kazemi V, Sullivan J. One Millisecond Face Alignment with an Ensemble of Regression Trees[C] Computer Vision and Pattern Recognition. IEEE, 2014:1867-1874.


[5] David J. Hand and Robert J. Till( 2001). A Simple Generalization of the Area Under the ROC Curve for Multiple Class Classification Problems . Machine Learning , 45(2), 171 – 186 .



一、综合方向


周志华,机器学习,清华大学出版社,2016

李航,统计学习方法,清华大学出版社,2012

Scikit-learn,https://scikit-learn.org/stable/index.html

Qcon 2017 feature engineering by Gabriel Moreira

Thomas M.Cover, JoyA. Thomas. Elementsof InformationTheory. 2006

Christopher M.Bishop. Pattern Recognition and Machine Learning. Springer-Verlag. 2006



二、预测方向


1、ML预测类参考文章


1. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html

2. Leo Breiman. (2001). “Random Forests.” Machine Learning , 45 (1): 5–32.doi:10.1023/A:10109334043243. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,” https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

3. J. H. Friedman. “Greedy Function Approximation: A Gradient Boosting Machine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

4. sklearn documentation for RandomForestRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.

RandomForestRegressor.html

5. L. Breiman, “Bagging predictors,” http://statistics.berkeley.edu/sites/default/files/techreports/421.pdf

6. Tin Ho. (1998). “The Random Subspace Method for Constructing DecisionForests.”IEEE Transactions on Pattern Analysis and Machine Intelligence ,20 (8): 832–844.doi:10.1109/34.709601

7. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

8. J. H. Friedman. “Stochastic Gradient Boosting,”https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

9. sklearn documentation for GradientBoostingRegressor, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html

10. J. H. Friedman. “Greedy Function Approximation: A Gradient BoostingMachine,”https://statweb.stanford.edu/~jhf/ftp/trebst.pdf

11. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

12. J. H. Friedman. “Stochastic Gradient Boosting,” https://statweb.stanford.edu/~jhf/ftp/stobst.pdf

13. sklearn documentation for RandomForestClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

14. sklearn documentation for GradientBoostingClassifier, http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html




版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

分享:
人工智能
使用钉钉扫一扫加入圈子
+ 订阅

了解行业+人工智能最先进的技术和实践,参与行业+人工智能实践项目

其他文章
最新文章
相关文章