ML之预测:玩转2018世界杯—采用机器学习预测小组赛、十六比赛、四决赛、半决赛、决赛以及世界杯总冠军的各个队伍

简介: ML之预测:玩转2018世界杯—采用机器学习预测小组赛、十六比赛、四决赛、半决赛、决赛以及世界杯总冠军的各个队伍

1、采用的历史数据集一览

image.png

image.png

image.png

2、代码设计思路

image.png

3.1小组赛预测结果

image.png

3.2十六队预测结果

image.png

4、部分代码

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

import matplotlib.ticker as ticker

import matplotlib.ticker as plticker

from sklearn.model_selection import train_test_split

from keras.models import Sequential  

from keras.layers import Dense  

from sklearn.datasets import make_regression  

from sklearn.preprocessing import MinMaxScaler  

from matplotlib import pyplot  

from numpy import array  


致谢:本文有一部参考设计,时基于数理统计科学家G Muriuki,设计思路也源于数理统计科学家G Muriuki大师的分析,在此基础上增加了深度、轮数、学习率等参数,感谢G Muriuki无私分享。采用2个Kaggle的数据集,其中使用自1930年第一届世界杯以来的所有参赛队的历史赛事结果。


相关文章
|
6月前
|
机器学习/深度学习 存储 算法
基于Flask+Bootstrap+机器学习的世界杯比赛预测系统
基于Flask+Bootstrap+机器学习的世界杯比赛预测系统
97 0
|
6月前
|
机器学习/深度学习 人工智能 算法
|
3月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
131 0
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
不做数值运算、纯靠嘴炮也能机器学习?基于自然语言的全新ML范式来了
【6月更文挑战第30天】基于自然语言的VML简化了机器学习,让模型参数变为人类可读的文本,提高理解和应用性。借助大型语言模型的进展,VML能直接编码先验知识,自动选择模型类,并提供可解释的学习过程。然而,表达能力、训练优化及泛化能力的挑战仍需克服。[论文链接](https://arxiv.org/abs/2406.04344)
40 1
|
5月前
|
机器学习/深度学习 人工智能 算法
人工智能(AI)、机器学习(ML)和深度学习(DL)
人工智能(AI)、机器学习(ML)和深度学习(DL)
166 1
|
6月前
|
机器学习/深度学习 数据采集 分布式计算
【机器学习】Spark ML 对数据进行规范化预处理 StandardScaler 与向量拆分
标准化Scaler是数据预处理技术,用于将特征值映射到均值0、方差1的标准正态分布,以消除不同尺度特征的影响,提升模型稳定性和精度。Spark ML中的StandardScaler实现此功能,通过`.setInputCol`、`.setOutputCol`等方法配置并应用到DataFrame数据。示例展示了如何在Spark中使用StandardScaler进行数据规范化,包括创建SparkSession,构建DataFrame,使用VectorAssembler和StandardScaler,以及将向量拆分为列。规范化有助于降低特征重要性,提高模型训练速度和计算效率。
124 6
|
6月前
|
机器学习/深度学习 分布式计算 算法
【机器学习】Spark ML 对数据特征进行 One-Hot 编码
One-Hot 编码是机器学习中将离散特征转换为数值表示的方法,每个取值映射为一个二进制向量,常用于避免特征间大小关系影响模型。Spark ML 提供 OneHotEncoder 进行编码,输入输出列可通过 `inputCol` 和 `outputCol` 参数设置。在示例中,先用 StringIndexer 对类别特征编码,再用 OneHotEncoder 转换,最后展示编码结果。注意 One-Hot 编码可能导致高维问题,可结合实际情况选择编码方式。
82 6
|
5月前
|
机器学习/深度学习 人工智能 边缘计算
人工智能(AI)和机器学习(ML)
人工智能(AI)和机器学习(ML)
79 0
|
机器学习/深度学习 算法 数据挖掘
ML |机器学习模型如何检测和预防过拟合?
ML |机器学习模型如何检测和预防过拟合?
178 0
|
6月前
|
机器学习/深度学习 安全 算法
学习机器学习(ML)在网络安全中的重要性
机器学习(ML)是人工智能的一个分支,它使用算法来使计算机系统能够自动地从数据和经验中进行学习,并改进其性能,而无需进行明确的编程。机器学习涉及对大量数据的分析,通过识别数据中的模式来做出预测或决策。这些算法会不断地迭代和优化,以提高其预测的准确性。
62 0