ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略

简介: ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略

损失函数的简介


     损失函数,又称目标函数,或误差函数,用来度量网络实际输出与期望输出之间的不一致程度,指导网络的参数学习和表示学习。


0、损失函数特点


损失函数是一个非负实值函数。

针对不同的问题,会采用不同的损失函数

– 回归问题(连续型):平方损失等

– 分类问题(离散型):对数损失、交叉熵等

不同的损失函数会影响网络的训练速度和网络的泛化性能

1、损失函数-连续型输出


平方损失函数(Square Loss)

image.png



绝对值损失函数(Absolute Value Loss)


image.png



2、损失函数-离散型输出


交叉熵损失(Cross-Entropy Loss; Log Loss),交叉熵损失:真实概率?? ; 模型预测概率??

image.png



熵:用于度量变量的不确定性程度

交叉熵:主要用于度量两个概率分布间的差异性信息

(1)、二分类问题的交叉熵损失函数:

         对于样本(?, ?),?为样本, ?为对应的标签, 在二分类问题中,其取值的集合可能为{0,1}。假设某个样本的真实标签为?,该样本的? = 1的概率为?,则该样本的损失函数为:− (????(?) + 1 − ? log(1 − ?))。


2.1、交叉熵和Softmax在多分类问题的结合应用


ML之SR:Softmax回归(Softmax Regression)的简介、使用方法、案例应用之详细攻略




损失函数/代价函数/目标函数之间区别


损失函数

用来估计你模型的预测值与真实值Y的不一致程度,它是一个非负实数值函数。损失函数越小,模型的鲁棒性就越好。是定义在单个样本上的,算的是一个样本的误差。

(1)、均方误差:也叫平方损失,是回归任务中最常见的性能度量。我们把均方误差当做线性回归的损失函数。因此我们可试图让其最小化

代价函数 定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。

目标函数

定义为最终需要优化的函数。等于结构风险Cost Function+正则化项。

正则化项:我们直接最小化经验风险很容易产生过拟合现象,所以一般需要在经验风险上加正则化项或损失,结构风险定义为


其中为模型的复杂度。模型越复杂,复杂度越大。复杂度表示了对复杂模型的惩罚。结构风险最小化,需要经验风险与模型复杂度同时最小。



损失函数的案例应用


后期更新……


相关文章
|
6月前
|
机器学习/深度学习 自动驾驶 机器人
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
【机器学习知识点】3. 目标检测任务中如何在图片上的目标位置绘制边界框
|
2月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
94 0
|
2月前
|
机器学习/深度学习 人工智能 自然语言处理
浅谈机器学习与深度学习的区别
浅谈机器学习与深度学习的区别
74 0
|
4月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
164 1
|
4月前
|
机器学习/深度学习 算法 数据中心
【机器学习】面试问答:PCA算法介绍?PCA算法过程?PCA为什么要中心化处理?PCA为什么要做正交变化?PCA与线性判别分析LDA降维的区别?
本文介绍了主成分分析(PCA)算法,包括PCA的基本概念、算法过程、中心化处理的必要性、正交变换的目的,以及PCA与线性判别分析(LDA)在降维上的区别。
109 4
|
6月前
|
机器学习/深度学习 人工智能 自然语言处理
算法金 | 一文看懂人工智能、机器学习、深度学习是什么、有什么区别!
**摘要:** 了解AI、ML和DL的旅程。AI是模拟人类智能的科学,ML是其分支,让机器从数据中学习。DL是ML的深化,利用多层神经网络处理复杂数据。AI应用广泛,包括医疗诊断、金融服务、自动驾驶等。ML助力个性化推荐和疾病预测。DL推动计算机视觉和自然语言处理的进步。从基础到实践,这些技术正改变我们的生活。想要深入学习,可参考《人工智能:一种现代的方法》和《深度学习》。一起探索智能的乐趣!
201 1
算法金 | 一文看懂人工智能、机器学习、深度学习是什么、有什么区别!
|
6月前
|
机器学习/深度学习 数据采集 人工智能
人工智能平台PAI产品使用合集之在使用ARIMA模型预测时,目标是预测输出12个值,但只打印了5个值,是什么原因
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习的区别
机器学习和深度学习的区别
135 1
|
6月前
|
机器学习/深度学习 人工智能 算法
人工智能平台PAI产品使用合集之多目标模型eval比较耗时间,该如何优化
阿里云人工智能平台PAI是一个功能强大、易于使用的AI开发平台,旨在降低AI开发门槛,加速创新,助力企业和开发者高效构建、部署和管理人工智能应用。其中包含了一系列相互协同的产品与服务,共同构成一个完整的人工智能开发与应用生态系统。以下是对PAI产品使用合集的概述,涵盖数据处理、模型开发、训练加速、模型部署及管理等多个环节。
|
6月前
|
机器学习/深度学习 算法
技术经验解读:【机器学习】代价函数(costfunction)
技术经验解读:【机器学习】代价函数(costfunction)