ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略

简介: ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略ML之LF:机器学习中常见的损失函数(连续型/离散型)的简介、损失函数/代价函数/目标函数之间区别、案例应用之详细攻略

损失函数的简介


     损失函数,又称目标函数,或误差函数,用来度量网络实际输出与期望输出之间的不一致程度,指导网络的参数学习和表示学习。


0、损失函数特点


损失函数是一个非负实值函数。

针对不同的问题,会采用不同的损失函数

– 回归问题(连续型):平方损失等

– 分类问题(离散型):对数损失、交叉熵等

不同的损失函数会影响网络的训练速度和网络的泛化性能

1、损失函数-连续型输出


平方损失函数(Square Loss)

image.png



绝对值损失函数(Absolute Value Loss)


image.png



2、损失函数-离散型输出


交叉熵损失(Cross-Entropy Loss; Log Loss),交叉熵损失:真实概率?? ; 模型预测概率??

image.png



熵:用于度量变量的不确定性程度

交叉熵:主要用于度量两个概率分布间的差异性信息

(1)、二分类问题的交叉熵损失函数:

         对于样本(?, ?),?为样本, ?为对应的标签, 在二分类问题中,其取值的集合可能为{0,1}。假设某个样本的真实标签为?,该样本的? = 1的概率为?,则该样本的损失函数为:− (????(?) + 1 − ? log(1 − ?))。


2.1、交叉熵和Softmax在多分类问题的结合应用


ML之SR:Softmax回归(Softmax Regression)的简介、使用方法、案例应用之详细攻略




损失函数/代价函数/目标函数之间区别


损失函数

用来估计你模型的预测值与真实值Y的不一致程度,它是一个非负实数值函数。损失函数越小,模型的鲁棒性就越好。是定义在单个样本上的,算的是一个样本的误差。

(1)、均方误差:也叫平方损失,是回归任务中最常见的性能度量。我们把均方误差当做线性回归的损失函数。因此我们可试图让其最小化

代价函数 定义在整个训练集上的,是所有样本误差的平均,也就是损失函数的平均。

目标函数

定义为最终需要优化的函数。等于结构风险Cost Function+正则化项。

正则化项:我们直接最小化经验风险很容易产生过拟合现象,所以一般需要在经验风险上加正则化项或损失,结构风险定义为


其中为模型的复杂度。模型越复杂,复杂度越大。复杂度表示了对复杂模型的惩罚。结构风险最小化,需要经验风险与模型复杂度同时最小。



损失函数的案例应用


后期更新……


相关文章
|
30天前
|
机器学习/深度学习 传感器 运维
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
本文探讨了时间序列分析中数据缺失的问题,并通过实际案例展示了如何利用机器学习技术进行缺失值补充。文章构建了一个模拟的能源生产数据集,采用线性回归和决策树回归两种方法进行缺失值补充,并从统计特征、自相关性、趋势和季节性等多个维度进行了详细评估。结果显示,决策树方法在处理复杂非线性模式和保持数据局部特征方面表现更佳,而线性回归方法则适用于简单的线性趋势数据。文章最后总结了两种方法的优劣,并给出了实际应用建议。
71 7
使用机器学习技术进行时间序列缺失数据填充:基础方法与入门案例
|
7月前
|
机器学习/深度学习 算法 数据挖掘
机器学习之sklearn基础——一个小案例,sklearn初体验
机器学习之sklearn基础——一个小案例,sklearn初体验
175 6
|
7月前
|
机器学习/深度学习 算法
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
【阿旭机器学习实战】【30】二手车价格预估--KNN回归案例
|
3月前
|
机器学习/深度学习 API
机器学习入门(七):线性回归原理,损失函数和正规方程
机器学习入门(七):线性回归原理,损失函数和正规方程
|
5月前
|
机器学习/深度学习 人工智能 数据处理
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
探测外太空中的系外行星是天文学和天体物理学的重要研究领域。随着望远镜观测技术的进步和大数据的积累,科学家们已经能够观测到大量恒星的光度变化,并尝试从中识别出由行星凌日(行星经过恒星前方时遮挡部分光线)引起的微小亮度变化。然而,由于数据量巨大且信号微弱,传统方法难以高效准确地识别所有行星信号。因此,本项目旨在利用机器学习技术,特别是深度学习,从海量的天文观测数据中自动识别和分类系外行星的信号。这要求设计一套高效的数据处理流程、构建适合的机器学习模型,并实现自动化的预测和验证系统。
97 1
【人工智能】项目实践与案例分析:利用机器学习探测外太空中的系外行星
|
4月前
|
机器学习/深度学习 人工智能 算法
利用机器学习预测股市趋势:一个实战案例
【9月更文挑战第5天】在这篇文章中,我们将探索如何使用机器学习技术来预测股市趋势。我们将通过一个简单的Python代码示例来演示如何实现这一目标。请注意,这只是一个入门级的示例,实际应用中可能需要更复杂的模型和更多的数据。
|
5月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习、深度学习、强化学习和迁移学习简介、相互对比、区别与联系。
机器学习、深度学习、强化学习和迁移学习都是人工智能领域的子领域,它们之间有一定的联系和区别。下面分别对这四个概念进行解析,并给出相互对比、区别与联系以及应用场景案例分析。
233 1
|
5月前
|
机器学习/深度学习 人工智能 算法
机器学习简介
机器学习简介
55 3
|
5月前
|
机器学习/深度学习 存储 分布式计算
Hadoop与机器学习的融合:案例研究
【8月更文第28天】随着大数据技术的发展,Hadoop已经成为处理大规模数据集的重要工具。同时,机器学习作为一种数据分析方法,在各个领域都有着广泛的应用。本文将介绍如何利用Hadoop处理大规模数据集,并结合机器学习算法来挖掘有价值的信息。我们将通过一个具体的案例研究——基于用户行为数据预测用户留存率——来展开讨论。
396 0
|
5月前
|
机器学习/深度学习 人工智能 算法
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
AI人工智能(ArtificialIntelligence,AI)、 机器学习(MachineLearning,ML)、 深度学习(DeepLearning,DL) 学习路径及推荐书籍
165 0