AI:人工智能概念之机器学习、深度学习中常见关键词、参数等中英文对照(绝对干货)(七)

简介: 本博主基本收集了网上所有有关于ML、DL的中文解释词汇,机器学习、深度学习中常见关键词、参数等中英文对照,如有没有涉及之处,请留言,本博主将持续续修改、更新!圆小白自学ML、DL之梦!

A


approximations近似值

arbitrary随意的

affine仿射的

arbitrary任意的

amino acid氨基酸

amenable经得起检验的

axiom公理,原则

abstract提取

architecture架构,体系结构;建造业

absolute绝对的

arsenal军火库

assignment分配

algebra线性代数

asymptotically无症状的

appropriate恰当的


B


bias偏差

brevity简短,简洁;短暂

broader广泛

briefly简短的

batch批量


C


convergence 收敛,集中到一点

convex凸的

contours轮廓

constraint约束

constant常理

commercial商务的

complementarity补充

coordinate ascent同等级上升

clipping剪下物;剪报;修剪

component分量;部件

continuous连续的

covariance协方差

canonical正规的,正则的

concave非凸的

corresponds相符合;相当;通信

corollary推论

concrete具体的事物,实在的东西

cross validation交叉验证

correlation相互关系

convention约定

cluster一簇

centroids 质心,形心

converge收敛

computationally计算(机)的

calculus计算


D


derive获得,取得

dual二元的

duality二元性;二象性;对偶性

derivation求导;得到;起源

denote预示,表示,是…的标志;意味着,[逻]指称

divergence 散度;发散性

dimension尺度,规格;维数

dot小圆点

distortion变形

density概率密度函数

discrete离散的

discriminative有识别能力的

diagonal对角

dispersion分散,散开

determinant决定因素

disjoint不相交的


E


encounter遇到

ellipses椭圆

equality等式

extra额外的

empirical经验;观察

ennmerate例举,计数

exceed超过,越出

expectation期望

efficient生效的

endow赋予

explicitly清楚的

exponential family指数家族

equivalently等价的


F


feasible可行的

forary初次尝试

finite有限的,限定的

forgo摒弃,放弃

fliter过滤

frequentist最常发生的

forward search前向式搜索

formalize使定形


G


generalized归纳的

generalization概括,归纳;普遍化;判断(根据不足)

guarantee保证;抵押品

generate形成,产生

geometric margins几何边界

gap裂口

generative生产的;有生产力的


H


heuristic启发式的;启发法;启发程序

hone怀恋;磨

hyperplane超平面


L


initial最初的

implement执行

intuitive凭直觉获知的

incremental增加的

intercept截距

intuitious直觉

instantiation例子

indicator指示物,指示器

interative重复的,迭代的

integral积分

identical相等的;完全相同的

indicate表示,指出

invariance不变性,恒定性

impose把…强加于

intermediate中间的

interpretation解释,翻译


J


joint distribution联合概率


L


lieu替代

logarithmic对数的,用对数表示的

latent潜在的

Leave-one-out cross validation留一法交叉验证


M


magnitude巨大

mapping绘图,制图;映射

matrix矩阵

mutual相互的,共同的

monotonically单调的

minor较小的,次要的

multinomial多项的

multi-class classification二分类问题


N


nasty讨厌的

notation标志,注释

naïve朴素的


O


obtain得到

oscillate摆动

optimization problem最优化问题

objective function目标函数

optimal最理想的

orthogonal(矢量,矩阵等)正交的

orientation方向

ordinary普通的

occasionally偶然的


P


partial derivative偏导数

property性质

proportional成比例的

primal原始的,最初的

permit允许

pseudocode伪代码

permissible可允许的

polynomial多项式

preliminary预备

precision精度

perturbation 不安,扰乱

poist假定,设想

positive semi-definite半正定的

parentheses圆括号

posterior probability后验概率

plementarity补充

pictorially图像的

parameterize确定…的参数

poisson distribution柏松分布

pertinent相关的


Q


quadratic二次的

quantity量,数量;分量

query疑问的


R


regularization使系统化;调整

reoptimize重新优化

restrict限制;限定;约束

reminiscent回忆往事的;提醒的;使人联想…的(of)

remark注意

random variable随机变量

respect考虑

respectively各自的;分别的

redundant过多的;冗余的


S


susceptible敏感的

stochastic可能的;随机的

symmetric对称的

sophisticated复杂的

spurious假的;伪造的

subtract减去;减法器

simultaneously同时发生地;同步地

suffice满足

scarce稀有的,难得的

split分解,分离

subset子集

statistic统计量

successive iteratious连续的迭代

scale标度

sort of有几分的

squares平方


T


trajectory轨迹

temporarily暂时的

terminology专用名词

tolerance容忍;公差

thumb翻阅

threshold阈,临界

theorem定理

tangent正弦


U


unit-length vector单位向量


V


valid有效的,正确的

variance方差

variable变量;变元

vocabulary词汇

valued经估价的;宝贵的


W


wrapper包装

相关文章
|
8天前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
36 3
|
30天前
|
机器学习/深度学习 人工智能 监控
揭秘人工智能:机器学习的魔法
【10月更文挑战第6天】本文将带你走进人工智能的世界,了解机器学习如何改变我们的生活。我们将深入探讨机器学习的原理,以及它在各个领域的应用。同时,我们也会分享一些实用的代码示例,帮助你更好地理解和应用机器学习。无论你是初学者还是专业人士,这篇文章都将为你提供有价值的信息和启示。让我们一起探索这个神奇的领域吧!
|
18天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能与机器学习:探索未来的技术边界
【10月更文挑战第18天】 在这篇文章中,我们将深入探讨人工智能(AI)和机器学习(ML)的基础知识、应用领域以及未来趋势。通过对比分析,我们将揭示这些技术如何改变我们的生活和工作方式,并预测它们在未来可能带来的影响。文章旨在为读者提供一个全面而深入的理解,帮助他们更好地把握这一领域的发展趋势。
|
5天前
|
机器学习/深度学习 人工智能 算法
人工智能与医疗健康:AI如何改变生命科学
【10月更文挑战第31天】人工智能(AI)正深刻改变医疗健康和生命科学领域。本文探讨AI在蛋白质结构预测、基因编辑、医学影像诊断和疾病预测等方面的应用,及其对科研进程、医疗创新、服务效率和跨学科融合的深远影响。尽管面临数据隐私和伦理等挑战,AI仍有望为医疗健康带来革命性变革。
55 30
|
1天前
|
机器学习/深度学习 人工智能 自动驾驶
探索人工智能的无限可能:从基础概念到实际应用
【10月更文挑战第35天】在这篇文章中,我们将一起走进人工智能的世界,探索它的无限可能。从基础概念出发,我们将深入理解人工智能的定义、发展历程以及主要技术。然后,我们将通过具体的代码示例,展示如何利用Python和TensorFlow实现一个简单的人工智能模型。最后,我们将探讨人工智能在现实世界中的应用,包括自动驾驶、医疗健康、金融等领域,并思考其未来发展的可能性。让我们一起开启这场人工智能的奇妙之旅吧!
10 1
|
5天前
|
机器学习/深度学习 人工智能 自然语言处理
探索人工智能与机器学习的边界####
本文深入探讨了人工智能(AI)与机器学习(ML)领域的最新进展,重点分析了深度学习技术如何推动AI的边界不断扩展。通过具体案例研究,揭示了这些技术在图像识别、自然语言处理和自动驾驶等领域的应用现状及未来趋势。同时,文章还讨论了当前面临的挑战,如数据隐私、算法偏见和可解释性问题,并提出了相应的解决策略。 ####
|
1月前
|
机器学习/深度学习 自然语言处理 JavaScript
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
在信息论、机器学习和统计学领域中,KL散度(Kullback-Leibler散度)是量化概率分布差异的关键概念。本文深入探讨了KL散度及其相关概念,包括Jensen-Shannon散度和Renyi散度。KL散度用于衡量两个概率分布之间的差异,而Jensen-Shannon散度则提供了一种对称的度量方式。Renyi散度通过可调参数α,提供了更灵活的散度度量。这些概念不仅在理论研究中至关重要,在实际应用中也广泛用于数据压缩、变分自编码器、强化学习等领域。通过分析电子商务中的数据漂移实例,展示了这些散度指标在捕捉数据分布变化方面的独特优势,为企业提供了数据驱动的决策支持。
53 2
信息论、机器学习的核心概念:熵、KL散度、JS散度和Renyi散度的深度解析及应用
|
14天前
|
机器学习/深度学习 人工智能 搜索推荐
人工智能与未来医疗:AI技术如何重塑医疗健康领域###
【10月更文挑战第21天】 一场由AI驱动的医疗革命正在悄然发生,它以前所未有的速度和深度改变着我们对于疾病预防、诊断、治疗及健康管理的认知。本文探讨了AI在医疗领域的多维度应用,包括精准医疗、药物研发加速、远程医疗普及以及患者个性化治疗体验的提升,揭示了这场技术变革背后的深远意义与挑战。 ###
44 6
|
15天前
|
人工智能 自动驾驶 数据安全/隐私保护
人工智能的伦理困境:我们如何确保AI的道德发展?
【10月更文挑战第21天】随着人工智能(AI)技术的飞速发展,其在各行各业的应用日益广泛,从而引发了关于AI伦理和道德问题的讨论。本文将探讨AI伦理的核心问题,分析当前面临的挑战,并提出确保AI道德发展的建议措施。
|
15天前
|
人工智能 搜索推荐 安全
人工智能与未来社会:探索AI在教育领域的革命性影响
本文深入探讨了人工智能(AI)技术在教育领域的潜在影响和变革。通过分析AI如何个性化学习路径、提高教学效率以及促进教育资源的公平分配,我们揭示了AI技术对教育模式的重塑力量。文章还讨论了实施AI教育所面临的挑战,包括数据隐私、伦理问题及技术普及障碍,并提出了相应的解决策略。通过具体案例分析,本文旨在启发读者思考AI如何助力构建更加智能、高效和包容的教育生态系统。

热门文章

最新文章

下一篇
无影云桌面