AI:人工智能概念之机器学习、深度学习中常见关键词、参数等中英文对照(绝对干货)(七)

简介: 本博主基本收集了网上所有有关于ML、DL的中文解释词汇,机器学习、深度学习中常见关键词、参数等中英文对照,如有没有涉及之处,请留言,本博主将持续续修改、更新!圆小白自学ML、DL之梦!

A


approximations近似值

arbitrary随意的

affine仿射的

arbitrary任意的

amino acid氨基酸

amenable经得起检验的

axiom公理,原则

abstract提取

architecture架构,体系结构;建造业

absolute绝对的

arsenal军火库

assignment分配

algebra线性代数

asymptotically无症状的

appropriate恰当的


B


bias偏差

brevity简短,简洁;短暂

broader广泛

briefly简短的

batch批量


C


convergence 收敛,集中到一点

convex凸的

contours轮廓

constraint约束

constant常理

commercial商务的

complementarity补充

coordinate ascent同等级上升

clipping剪下物;剪报;修剪

component分量;部件

continuous连续的

covariance协方差

canonical正规的,正则的

concave非凸的

corresponds相符合;相当;通信

corollary推论

concrete具体的事物,实在的东西

cross validation交叉验证

correlation相互关系

convention约定

cluster一簇

centroids 质心,形心

converge收敛

computationally计算(机)的

calculus计算


D


derive获得,取得

dual二元的

duality二元性;二象性;对偶性

derivation求导;得到;起源

denote预示,表示,是…的标志;意味着,[逻]指称

divergence 散度;发散性

dimension尺度,规格;维数

dot小圆点

distortion变形

density概率密度函数

discrete离散的

discriminative有识别能力的

diagonal对角

dispersion分散,散开

determinant决定因素

disjoint不相交的


E


encounter遇到

ellipses椭圆

equality等式

extra额外的

empirical经验;观察

ennmerate例举,计数

exceed超过,越出

expectation期望

efficient生效的

endow赋予

explicitly清楚的

exponential family指数家族

equivalently等价的


F


feasible可行的

forary初次尝试

finite有限的,限定的

forgo摒弃,放弃

fliter过滤

frequentist最常发生的

forward search前向式搜索

formalize使定形


G


generalized归纳的

generalization概括,归纳;普遍化;判断(根据不足)

guarantee保证;抵押品

generate形成,产生

geometric margins几何边界

gap裂口

generative生产的;有生产力的


H


heuristic启发式的;启发法;启发程序

hone怀恋;磨

hyperplane超平面


L


initial最初的

implement执行

intuitive凭直觉获知的

incremental增加的

intercept截距

intuitious直觉

instantiation例子

indicator指示物,指示器

interative重复的,迭代的

integral积分

identical相等的;完全相同的

indicate表示,指出

invariance不变性,恒定性

impose把…强加于

intermediate中间的

interpretation解释,翻译


J


joint distribution联合概率


L


lieu替代

logarithmic对数的,用对数表示的

latent潜在的

Leave-one-out cross validation留一法交叉验证


M


magnitude巨大

mapping绘图,制图;映射

matrix矩阵

mutual相互的,共同的

monotonically单调的

minor较小的,次要的

multinomial多项的

multi-class classification二分类问题


N


nasty讨厌的

notation标志,注释

naïve朴素的


O


obtain得到

oscillate摆动

optimization problem最优化问题

objective function目标函数

optimal最理想的

orthogonal(矢量,矩阵等)正交的

orientation方向

ordinary普通的

occasionally偶然的


P


partial derivative偏导数

property性质

proportional成比例的

primal原始的,最初的

permit允许

pseudocode伪代码

permissible可允许的

polynomial多项式

preliminary预备

precision精度

perturbation 不安,扰乱

poist假定,设想

positive semi-definite半正定的

parentheses圆括号

posterior probability后验概率

plementarity补充

pictorially图像的

parameterize确定…的参数

poisson distribution柏松分布

pertinent相关的


Q


quadratic二次的

quantity量,数量;分量

query疑问的


R


regularization使系统化;调整

reoptimize重新优化

restrict限制;限定;约束

reminiscent回忆往事的;提醒的;使人联想…的(of)

remark注意

random variable随机变量

respect考虑

respectively各自的;分别的

redundant过多的;冗余的


S


susceptible敏感的

stochastic可能的;随机的

symmetric对称的

sophisticated复杂的

spurious假的;伪造的

subtract减去;减法器

simultaneously同时发生地;同步地

suffice满足

scarce稀有的,难得的

split分解,分离

subset子集

statistic统计量

successive iteratious连续的迭代

scale标度

sort of有几分的

squares平方


T


trajectory轨迹

temporarily暂时的

terminology专用名词

tolerance容忍;公差

thumb翻阅

threshold阈,临界

theorem定理

tangent正弦


U


unit-length vector单位向量


V


valid有效的,正确的

variance方差

variable变量;变元

vocabulary词汇

valued经估价的;宝贵的


W


wrapper包装

相关文章
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
449 3
|
9月前
|
机器学习/深度学习 人工智能 供应链
从概念到商业价值:AI、机器学习与深度学习全景指南
在这个科技飞速发展的时代🚀,人工智能正以惊人的速度渗透到我们的生活和工作中👀。但面对铺天盖地的AI术语和概念,很多人感到困惑不已😣。"AI"、"机器学习"、"深度学习"和"神经网络"到底有什么区别?它们如何相互关联?如何利用这些技术提升工作效率和创造价值?
487 0
|
机器学习/深度学习 人工智能 算法
探索机器学习:从线性回归到深度学习
本文将带领读者从基础的线性回归模型开始,逐步深入到复杂的深度学习网络。我们将通过代码示例,展示如何实现这些算法,并解释其背后的数学原理。无论你是初学者还是有经验的开发者,这篇文章都将为你提供有价值的见解和知识。让我们一起踏上这段激动人心的旅程吧!
246 3
|
机器学习/深度学习 人工智能 算法
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
手写数字识别系统,使用Python作为主要开发语言,基于深度学习TensorFlow框架,搭建卷积神经网络算法。并通过对数据集进行训练,最后得到一个识别精度较高的模型。并基于Flask框架,开发网页端操作平台,实现用户上传一张图片识别其名称。
564 0
【手写数字识别】Python+深度学习+机器学习+人工智能+TensorFlow+算法模型
|
机器学习/深度学习 人工智能 算法
机器学习与深度学习:差异解析
机器学习与深度学习作为两大核心技术,各自拥有独特的魅力和应用价值。尽管它们紧密相连,但两者之间存在着显著的区别。本文将从定义、技术、数据需求、应用领域、模型复杂度以及计算资源等多个维度,对机器学习与深度学习进行深入对比,帮助您更好地理解它们之间的差异。
|
机器学习/深度学习 自然语言处理 语音技术
探索机器学习中的深度学习模型:原理与应用
探索机器学习中的深度学习模型:原理与应用
373 0
|
机器学习/深度学习 自然语言处理 算法
机器学习和深度学习之间的区别
机器学习和深度学习在实际应用中各有优势和局限性。机器学习适用于一些数据量较小、问题相对简单、对模型解释性要求较高的场景;而深度学习则在处理大规模、复杂的数据和任务时表现出色,但需要更多的计算资源和数据,并且模型的解释性较差。在实际应用中,需要根据具体的问题和需求,结合两者的优势,选择合适的方法来解决问题。
796 0
|
机器学习/深度学习 存储 搜索推荐
利用机器学习算法改善电商推荐系统的效率
电商行业日益竞争激烈,提升用户体验成为关键。本文将探讨如何利用机器学习算法优化电商推荐系统,通过分析用户行为数据和商品信息,实现个性化推荐,从而提高推荐效率和准确性。
629 14
|
机器学习/深度学习 算法 数据可视化
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
实现机器学习算法时,特征选择是非常重要的一步,你有哪些推荐的方法?
636 1
|
机器学习/深度学习 算法 搜索推荐
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)
Machine Learning机器学习之决策树算法 Decision Tree(附Python代码)

热门文章

最新文章