AI:人工智能概念之机器学习、深度学习中常见关键词、参数等中英文对照(绝对干货)(七)

简介: 本博主基本收集了网上所有有关于ML、DL的中文解释词汇,机器学习、深度学习中常见关键词、参数等中英文对照,如有没有涉及之处,请留言,本博主将持续续修改、更新!圆小白自学ML、DL之梦!

A


approximations近似值

arbitrary随意的

affine仿射的

arbitrary任意的

amino acid氨基酸

amenable经得起检验的

axiom公理,原则

abstract提取

architecture架构,体系结构;建造业

absolute绝对的

arsenal军火库

assignment分配

algebra线性代数

asymptotically无症状的

appropriate恰当的


B


bias偏差

brevity简短,简洁;短暂

broader广泛

briefly简短的

batch批量


C


convergence 收敛,集中到一点

convex凸的

contours轮廓

constraint约束

constant常理

commercial商务的

complementarity补充

coordinate ascent同等级上升

clipping剪下物;剪报;修剪

component分量;部件

continuous连续的

covariance协方差

canonical正规的,正则的

concave非凸的

corresponds相符合;相当;通信

corollary推论

concrete具体的事物,实在的东西

cross validation交叉验证

correlation相互关系

convention约定

cluster一簇

centroids 质心,形心

converge收敛

computationally计算(机)的

calculus计算


D


derive获得,取得

dual二元的

duality二元性;二象性;对偶性

derivation求导;得到;起源

denote预示,表示,是…的标志;意味着,[逻]指称

divergence 散度;发散性

dimension尺度,规格;维数

dot小圆点

distortion变形

density概率密度函数

discrete离散的

discriminative有识别能力的

diagonal对角

dispersion分散,散开

determinant决定因素

disjoint不相交的


E


encounter遇到

ellipses椭圆

equality等式

extra额外的

empirical经验;观察

ennmerate例举,计数

exceed超过,越出

expectation期望

efficient生效的

endow赋予

explicitly清楚的

exponential family指数家族

equivalently等价的


F


feasible可行的

forary初次尝试

finite有限的,限定的

forgo摒弃,放弃

fliter过滤

frequentist最常发生的

forward search前向式搜索

formalize使定形


G


generalized归纳的

generalization概括,归纳;普遍化;判断(根据不足)

guarantee保证;抵押品

generate形成,产生

geometric margins几何边界

gap裂口

generative生产的;有生产力的


H


heuristic启发式的;启发法;启发程序

hone怀恋;磨

hyperplane超平面


L


initial最初的

implement执行

intuitive凭直觉获知的

incremental增加的

intercept截距

intuitious直觉

instantiation例子

indicator指示物,指示器

interative重复的,迭代的

integral积分

identical相等的;完全相同的

indicate表示,指出

invariance不变性,恒定性

impose把…强加于

intermediate中间的

interpretation解释,翻译


J


joint distribution联合概率


L


lieu替代

logarithmic对数的,用对数表示的

latent潜在的

Leave-one-out cross validation留一法交叉验证


M


magnitude巨大

mapping绘图,制图;映射

matrix矩阵

mutual相互的,共同的

monotonically单调的

minor较小的,次要的

multinomial多项的

multi-class classification二分类问题


N


nasty讨厌的

notation标志,注释

naïve朴素的


O


obtain得到

oscillate摆动

optimization problem最优化问题

objective function目标函数

optimal最理想的

orthogonal(矢量,矩阵等)正交的

orientation方向

ordinary普通的

occasionally偶然的


P


partial derivative偏导数

property性质

proportional成比例的

primal原始的,最初的

permit允许

pseudocode伪代码

permissible可允许的

polynomial多项式

preliminary预备

precision精度

perturbation 不安,扰乱

poist假定,设想

positive semi-definite半正定的

parentheses圆括号

posterior probability后验概率

plementarity补充

pictorially图像的

parameterize确定…的参数

poisson distribution柏松分布

pertinent相关的


Q


quadratic二次的

quantity量,数量;分量

query疑问的


R


regularization使系统化;调整

reoptimize重新优化

restrict限制;限定;约束

reminiscent回忆往事的;提醒的;使人联想…的(of)

remark注意

random variable随机变量

respect考虑

respectively各自的;分别的

redundant过多的;冗余的


S


susceptible敏感的

stochastic可能的;随机的

symmetric对称的

sophisticated复杂的

spurious假的;伪造的

subtract减去;减法器

simultaneously同时发生地;同步地

suffice满足

scarce稀有的,难得的

split分解,分离

subset子集

statistic统计量

successive iteratious连续的迭代

scale标度

sort of有几分的

squares平方


T


trajectory轨迹

temporarily暂时的

terminology专用名词

tolerance容忍;公差

thumb翻阅

threshold阈,临界

theorem定理

tangent正弦


U


unit-length vector单位向量


V


valid有效的,正确的

variance方差

variable变量;变元

vocabulary词汇

valued经估价的;宝贵的


W


wrapper包装

相关文章
|
1月前
|
机器学习/深度学习 人工智能 安全
探索AI的未来:从机器学习到深度学习
【10月更文挑战第28天】本文将带你走进AI的世界,从机器学习的基本概念到深度学习的复杂应用,我们将一起探索AI的未来。你将了解到AI如何改变我们的生活,以及它在未来可能带来的影响。无论你是AI专家还是初学者,这篇文章都将为你提供新的视角和思考。让我们一起探索AI的奥秘,看看它将如何塑造我们的未来。
74 3
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
机器学习之解释性AI与可解释性机器学习
随着人工智能技术的广泛应用,机器学习模型越来越多地被用于决策过程。然而,这些模型,尤其是深度学习模型,通常被视为“黑箱”,难以理解其背后的决策逻辑。解释性AI(Explainable AI, XAI)和可解释性机器学习(Interpretable Machine Learning, IML)旨在解决这个问题,使模型的决策过程透明、可信。
50 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI:机器学习的魔法与代码
【10月更文挑战第33天】本文将带你走进AI的世界,了解机器学习的原理和应用。我们将通过Python代码示例,展示如何实现一个简单的线性回归模型。无论你是AI新手还是有经验的开发者,这篇文章都会给你带来新的启示。让我们一起探索AI的奥秘吧!
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
探索AI的奥秘:机器学习入门指南
【10月更文挑战第30天】本篇文章是一份初学者友好的机器学习入门指南,旨在帮助读者理解并开始实践机器学习。我们将介绍机器学习的基本概念,包括监督学习、无监督学习和强化学习等。我们还将提供一些实用的代码示例,以帮助读者更好地理解和应用这些概念。无论你是编程新手,还是有一定经验的开发者,这篇文章都将为你提供一个清晰的机器学习入门路径。
38 2
|
1月前
|
机器学习/深度学习 数据采集 人工智能
揭秘AI的魔法:机器学习如何改变我们的世界
【10月更文挑战第22天】在这篇文章中,我们将深入探讨机器学习的奥秘,揭示它是如何在我们的日常生活中扮演着越来越重要的角色。从简单的数据分类到复杂的预测模型,机器学习的应用已经渗透到各个领域。我们将通过实例和代码示例,展示机器学习的基本概念、工作原理以及它如何改变我们的生活。无论你是科技爱好者还是对AI充满好奇的初学者,这篇文章都将为你打开一扇通往未来的大门。
|
26天前
|
机器学习/深度学习 人工智能 自动驾驶
揭秘AI:机器学习如何改变我们的世界
在这篇文章中,我们将深入探讨机器学习如何改变我们的世界。从自动驾驶汽车到智能医疗诊断,机器学习正在逐步渗透到我们生活的每一个角落。我们将通过实例和代码示例,揭示机器学习的工作原理,以及它如何影响我们的生活。无论你是科技爱好者,还是对人工智能充满好奇的普通读者,这篇文章都将为你打开一扇新的大门,带你走进机器学习的世界。
28 0
|
28天前
|
机器学习/深度学习 数据采集 人工智能
自动化测试的未来:AI与机器学习的融合之路
【10月更文挑战第41天】随着技术的快速发展,软件测试领域正经历一场由人工智能和机器学习驱动的革命。本文将探讨这一趋势如何改变测试流程、提高测试效率以及未来可能带来的挑战和机遇。我们将通过具体案例分析,揭示AI和ML在自动化测试中的应用现状及其潜力。
36 0
|
12天前
|
机器学习/深度学习 人工智能 自然语言处理
人工智能在医疗诊断中的应用与前景####
本文深入探讨了人工智能(AI)技术在医疗诊断领域的应用现状、面临的挑战及未来发展趋势。通过分析AI如何辅助医生进行疾病诊断,提高诊断效率和准确性,以及其在个性化医疗中的潜力,文章揭示了AI技术对医疗行业变革的推动作用。同时,也指出了数据隐私、算法偏见等伦理问题,并展望了AI与人类医生协同工作的前景。 ####
27 0
|
16天前
|
机器学习/深度学习 人工智能 搜索推荐
探索人工智能在现代医疗中的革新应用
本文深入探讨了人工智能(AI)技术在医疗领域的最新进展,重点分析了AI如何通过提高诊断准确性、个性化治疗方案的制定以及优化患者管理流程来革新现代医疗。文章还讨论了AI技术面临的挑战和未来发展趋势,为读者提供了一个全面了解AI在医疗领域应用的视角。
23 0
|
7天前
|
人工智能 缓存 异构计算
云原生AI加速生成式人工智能应用的部署构建
本文探讨了云原生技术背景下,尤其是Kubernetes和容器技术的发展,对模型推理服务带来的挑战与优化策略。文中详细介绍了Knative的弹性扩展机制,包括HPA和CronHPA,以及针对传统弹性扩展“滞后”问题提出的AHPA(高级弹性预测)。此外,文章重点介绍了Fluid项目,它通过分布式缓存优化了模型加载的I/O操作,显著缩短了推理服务的冷启动时间,特别是在处理大规模并发请求时表现出色。通过实际案例,展示了Fluid在vLLM和Qwen模型推理中的应用效果,证明了其在提高模型推理效率和响应速度方面的优势。
云原生AI加速生成式人工智能应用的部署构建