索引顺序扫描引发的heap scan IO放大, 背后的统计学原理与解决办法

本文涉及的产品
RDS PostgreSQL Serverless,0.5-4RCU 50GB 3个月
推荐场景:
对影评进行热评分析
云数据库 RDS SQL Server,基础系列 2核4GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 标签 PostgreSQL , 优化器 , 索引扫描 , 堆扫描 , IO放大 背景 通过B-TREE索引扫描可能会带来了巨大的heap page scan数目,即IO的放大. 为什么呢? 示例视频如下 : http://www.tudou.com/programs/view/yQ0SzBqx_4w/ 如果数据库的单个数据块(block_size)很大的话, 这种情况带来的负面影响也将被放大. 例如32k的block_size显然比8k的block_size扫描开销更大. 本文将讲解一下索引扫描引发的heap page scan放大的原因, 以及解决办法。

标签

PostgreSQL , 优化器 , 索引扫描 , 堆扫描 , IO放大


背景

通过B-TREE索引扫描可能会带来了巨大的heap page scan数目,即IO的放大.

为什么呢?

请接下去看完本文揭晓答案。

IO放大的后果:

如果数据库的单个数据块(block_size)很大的话, 这种情况带来的负面影响也将被放大. 例如32k的block_size显然比8k的block_size扫描开销更大.

本文将讲解一下索引扫描引发的heap page scan放大的原因, 以及解决办法。 告诫大家注意这样的事情发生,以及如何对付。

正文

测试环境的成本因子如下 :

shared_buffers = 8192MB                 # min 128kB  
#seq_page_cost = 1.0                    # measured on an arbitrary scale  
random_page_cost = 1.0                  # same scale as above  
#cpu_tuple_cost = 0.01                  # same scale as above  
cpu_index_tuple_cost = 0.005            # same scale as above  
#cpu_operator_cost = 0.0025             # same scale as above  
effective_cache_size = 96GB  

我们先创建一个测试表, 插入一些测试数据, 创建一个索引 :

digoal=> create table test_indexscan(id int, info text);  
CREATE TABLE  
digoal=> insert into test_indexscan select generate_series(1,5000000),md5(random()::text);  
INSERT 0 5000000  
digoal=> create index idx_test_indexscan_id on test_indexscan (id);  
CREATE INDEX  

我们查看这个表和索引占用了多少数据块.

digoal=> select relpages from pg_class where relname='test_indexscan';  
 relpages   
----------  
    10396  
(1 row)  
digoal=> select relpages from pg_class where relname='idx_test_indexscan_id';  
 relpages   
----------  
     3402  
(1 row)  

接下来分析以下查询, 我们看到走索引扫描, 并且扫描的数据块是13547个. (10209 +3338).

扫描的数据块和实际表占用的数据块和索引块相当.

digoal=> explain (analyze,verbose,costs,buffers,timing) select * from test_indexscan where id>90000;  
                                                                           QUERY PLAN                                                 
                               
------------------------------------------------------------------------------------------------------------------------------------  
-----------------------------  
 Index Scan using idx_test_indexscan_id on digoal.test_indexscan  (cost=0.43..99518.57 rows=4912065 width=37) (actual time=0.180..21  
72.949 rows=4910000 loops=1)  
   Output: id, info  
   Index Cond: (test_indexscan.id > 90000)  
   Buffers: shared hit=10209 read=3338  
 Total runtime: 2674.637 ms  
(5 rows)  

这里使用索引扫描为什么没有带来heap page扫描的放大呢? 原因和值的顺序与物理存储顺序一致.

如下, 那么索引扫描的时候没有发生块的跳跃 :

digoal=> select correlation from pg_stats where tablename='test_indexscan' and attname='id';  
 correlation   
-------------  
  1  
(1 row)  
digoal=> select ctid,id from test_indexscan limit 10;  
  ctid  |   id      
--------+---------  
 (0,1)  | 1  
 (0,2)  | 2  
 (0,3)  | 3  
 (0,4)  | 4  
 (0,5)  | 5  
 (0,6)  | 6  
 (0,7)  | 7  
 (0,8)  | 8  
 (0,9)  | 9  
 (0,10) | 10  
(10 rows)  

接下来我们插入随机数据, 使得索引扫描时发生heap page的跳跃.

digoal=> truncate test_indexscan ;  
TRUNCATE TABLE  
digoal=> insert into test_indexscan select (random()*5000000)::int,md5(random()::text) from generate_series(1,100000);  
INSERT 0 100000  

查询当前的ID列的顺性, 非常小, 说明这个值非常的离散.

digoal=> select correlation from pg_stats where tablename='test_indexscan' and attname='id';  
 correlation   
-------------  
  0.00986802  
(1 row)  

从数据分布结果中也能看到这点.

digoal=> select ctid,id from test_indexscan limit 10;  
  ctid  |   id      
--------+---------  
 (0,1)  | 4217216  
 (0,2)  | 2127868  
 (0,3)  | 2072952  
 (0,4)  |   62641  
 (0,5)  | 4927312  
 (0,6)  | 3000894  
 (0,7)  | 2799439  
 (0,8)  | 4165217  
 (0,9)  | 2446438  
 (0,10) | 2835211  
(10 rows)  

按以下顺序扫描, 显然会出现大量的数据块的跳跃.

digoal=> select id,ctid from test_indexscan order by id limit 10;  
 id  |   ctid      
-----+-----------  
  56 | (192,318)  
  73 | (119,163)  
 218 | (189,2)  
 235 | (7,209)  
 260 | (41,427)  
 340 | (37,371)  
 548 | (118,363)  
 607 | (143,174)  
 690 | (161,38)  
 714 | (1,21)  
(10 rows)  

当前这个表和索引占用的数据块如下 :

digoal=> select relpages from pg_class where relname='test_indexscan';  
 relpages   
----------  
      208  
(1 row)  
  
digoal=> select relpages from pg_class where relname='idx_test_indexscan_id';  
 relpages   
----------  
       86  
(1 row)  

接下来我们执行这个SQL, 发现走索引扫描了, 但是显然shared hit变得非常的大, 原因就是每扫描一个索引条目, 对应到heap page number都是跳跃的. 造成了heap page扫描的放大. 具体放大多少行呢, 和差出来的行差不多.

digoal=> explain (analyze,verbose,costs,buffers,timing) select * from test_indexscan where id>90000;  
                                                                        QUERY PLAN                                                    
                        
------------------------------------------------------------------------------------------------------------------------------------  
----------------------  
 Index Scan using idx_test_indexscan_id on digoal.test_indexscan  (cost=0.29..2035.38 rows=99719 width=37) (actual time=0.027..87.45  
6 rows=98229 loops=1)  
   Output: id, info  
   Index Cond: (test_indexscan.id > 90000)  
   Buffers: shared hit=97837  
 Total runtime: 97.370 ms  
(5 rows)  

heap page scan放大评估和索引扫描了多少条目有关, 但至少有98229个条目 :

digoal=> select count(*) from test_indexscan where id>90000;  
 count   
-------  
 98229  
(1 row)  

如果纯随机扫描, 那么将要扫描98229次heap page. 也就不难理解这里的Buffers: shared hit=97837.

但是实际上, PostgreSQL的优化器似乎没有关注这些开销, 因为我们看到的成本只有2035.38 (这里和random_page_cost以及effective_cache_size 大于整个表和索引的空间有关)

接下来把random_page_cost设置为2和1, 两个cost相减, 看看到底优化器评估了多少个块扫描.

digoal=> set random_page_cost=2;  
SET  
digoal=> set enable_seqscan=off;  
SET  
digoal=> explain (analyze,verbose,costs,buffers,timing) select * from test_indexscan where id>90000;  
                                                                        QUERY PLAN                                                    
                        
------------------------------------------------------------------------------------------------------------------------------------  
----------------------  
 Index Scan using idx_test_indexscan_id on digoal.test_indexscan  (cost=0.29..2305.73 rows=98255 width=37) (actual time=0.045..81.76  
8 rows=98229 loops=1)  
   Output: id, info  
   Index Cond: (test_indexscan.id > 90000)  
   Buffers: shared hit=97837  
 Total runtime: 92.186 ms  
(5 rows)  
  
digoal=> set random_page_cost=1;  
SET  
digoal=> explain (analyze,verbose,costs,buffers,timing) select * from test_indexscan where id>90000;  
                                                                        QUERY PLAN                                                    
                        
------------------------------------------------------------------------------------------------------------------------------------  
----------------------  
 Index Scan using idx_test_indexscan_id on digoal.test_indexscan  (cost=0.29..2012.75 rows=98255 width=37) (actual time=0.028..80.05  
5 rows=98229 loops=1)  
   Output: id, info  
   Index Cond: (test_indexscan.id > 90000)  
   Buffers: shared hit=97837  
 Total runtime: 90.549 ms  
(5 rows)  

相减得到293, 即优化器认为index scan需要扫描293个数据块.

digoal=> select 2305-2012;  
 ?column?   
----------  
      293  
(1 row)  

接下来我把enable_indexscan关闭, 让优化器选择bitmap scan.

digoal=> set enable_indexscan=off;  
SET  
digoal=> explain (analyze,verbose,costs,buffers,timing) select * from test_indexscan where id>90000;  
                                                                QUERY PLAN                                                            
        
------------------------------------------------------------------------------------------------------------------------------------  
 Bitmap Heap Scan on digoal.test_indexscan  (cost=846.77..2282.96 rows=98255 width=37) (actual time=15.291..35.911 rows=98229 loops=  
1)  
   Output: id, info  
   Recheck Cond: (test_indexscan.id > 90000)  
   Buffers: shared hit=292  
   ->  Bitmap Index Scan on idx_test_indexscan_id  (cost=0.00..822.21 rows=98255 width=0) (actual time=15.202..15.202 rows=98229 loo  
ps=1)  
         Index Cond: (test_indexscan.id > 90000)  
         Buffers: shared hit=84  
 Total runtime: 45.838 ms  
(8 rows)  

从bitmap scan的结果可以看到, 实际扫描的块为292个, 相比index scan少扫描了9.7万多数据块. 并且实际的执行时间也是bitmap scan要快很多.

本例PostgreSQL在计算index scan的random page的成本时, 评估得到的index scan成本小于bitmap index scan的成本, 然而实际上当correlation 很小时, index scan会扫描更多次的heap page, 成本远远大于bitmap scan.

本例发生这样的情况, 具体的原因和我们的成本因子设置有关系, 因为错误的设置了random_page_cost以及表和索引的大小小于effective_cache_size, PostgreSQL在使用这样的成本因子计算成本时, 出现了bitmap scan大于index scan成本的结果.

所以设置正确的成本因子非常重要, 这也是我们需要校准成本因子的原因.

例子 :

[postgres@digoal pgdata]$ psql  
psql (9.3.4)  
Type "help" for help.  

默认的成本因子如下

digoal=# show seq_page_cost;  
 seq_page_cost   
---------------  
 1  
(1 row)  
  
digoal=# show random_page_cost;  
 random_page_cost   
------------------  
 4  
(1 row)  
  
digoal=# show cpu_tuple_cost;  
 cpu_tuple_cost   
----------------  
 0.01  
(1 row)  
  
digoal=# show cpu_index_tuple_cost;  
 cpu_index_tuple_cost   
----------------------  
 0.005  
(1 row)  
  
digoal=# show cpu_operator_cost;  
 cpu_operator_cost   
-------------------  
 0.0025  
(1 row)  
  
digoal=# show effective_cache_size;  
 effective_cache_size   
----------------------  
 128MB  
(1 row)  

表和索引的大小如下

digoal=# \dt+ tbl_cost_align   
                         List of relations  
 Schema |      Name      | Type  |  Owner   |  Size  | Description   
--------+----------------+-------+----------+--------+-------------  
 public | tbl_cost_align | table | postgres | 219 MB |   
(1 row)  
  
digoal=# \di+ tbl_cost_align_id   
                                  List of relations  
 Schema |       Name        | Type  |  Owner   |     Table      | Size  | Description   
--------+-------------------+-------+----------+----------------+-------+-------------  
 public | tbl_cost_align_id | index | postgres | tbl_cost_align | 64 MB |   
(1 row)  

把random_page_cost校准为10, 这个在一般的硬件环境中都适用.

digoal=# set random_page_cost=10;  
SET  

默认选择了全表扫描

digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                            QUERY PLAN                                                               
-----------------------------------------------------------------------------------------------------------------------------------  
 Seq Scan on public.tbl_cost_align  (cost=0.00..65538.00 rows=2996963 width=45) (actual time=0.050..1477.028 rows=2997015 loops=1)  
   Output: id, info, crt_time  
   Filter: (tbl_cost_align.id > 2000000)  
   Rows Removed by Filter: 2985  
   Buffers: shared hit=28038  
 Total runtime: 2011.742 ms  
(6 rows)  

关闭全表扫描后, 选择了bitmap scan

digoal=# set enable_seqscan=off;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                     QUERY PLAN                                                       
                  
------------------------------------------------------------------------------------------------------------------------------------  
----------------  
 Bitmap Heap Scan on public.tbl_cost_align  (cost=105426.89..170926.93 rows=2996963 width=45) (actual time=1221.104..2911.889 rows=2  
997015 loops=1)  
   Output: id, info, crt_time  
   Recheck Cond: (tbl_cost_align.id > 2000000)  
   Rows Removed by Index Recheck: 2105  
   Buffers: shared hit=36229  
   ->  Bitmap Index Scan on tbl_cost_align_id  (cost=0.00..104677.65 rows=2996963 width=0) (actual time=1214.865..1214.865 rows=2997  
015 loops=1)  
         Index Cond: (tbl_cost_align.id > 2000000)  
         Buffers: shared hit=8191  
 Total runtime: 3585.699 ms  
(9 rows)  

关闭bitmap scan后选择了index scan, index scan的cost远远大于评估到的bitmap scan. 因为我们使用了正确的成本因子.

digoal=# set enable_bitmapscan=off;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                           QUERY PLAN                                                 
                              
------------------------------------------------------------------------------------------------------------------------------------  
----------------------------  
 Index Scan using tbl_cost_align_id on public.tbl_cost_align  (cost=0.43..16601388.04 rows=2996963 width=45) (actual time=0.064..566  
2.361 rows=2997015 loops=1)  
   Output: id, info, crt_time  
   Index Cond: (tbl_cost_align.id > 2000000)  
   Buffers: shared hit=3005084  
 Total runtime: 6173.067 ms  
(5 rows)  

当错误的设置了random_page_cost=1=seq_page_cost时, 执行计划会有所改变(改变出现在effective_cache_size大于表和索引的大小时).

the wrong plan cost occur when i set random_page_cost to 1, and effective_cache_size big then index size and table size in this case.  

重新进入psql, 所有因子重回默认值.

digoal=# set random_page_cost=1;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                            QUERY PLAN                                                               
-----------------------------------------------------------------------------------------------------------------------------------  
 Seq Scan on public.tbl_cost_align  (cost=0.00..65538.00 rows=2996963 width=45) (actual time=0.040..1692.712 rows=2997015 loops=1)  
   Output: id, info, crt_time  
   Filter: (tbl_cost_align.id > 2000000)  
   Rows Removed by Filter: 2985  
   Buffers: shared hit=28038  
 Total runtime: 2249.313 ms  
(6 rows)  

目前看来还正确

digoal=# set enable_seqscan=off;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                    QUERY PLAN                                                        
                
------------------------------------------------------------------------------------------------------------------------------------  
--------------  
 Bitmap Heap Scan on public.tbl_cost_align  (cost=31446.89..96946.93 rows=2996963 width=45) (actual time=1224.445..2454.797 rows=299  
7015 loops=1)  
   Output: id, info, crt_time  
   Recheck Cond: (tbl_cost_align.id > 2000000)  
   Rows Removed by Index Recheck: 2105  
   Buffers: shared hit=36229  
   ->  Bitmap Index Scan on tbl_cost_align_id  (cost=0.00..30697.65 rows=2996963 width=0) (actual time=1220.404..1220.404 rows=29970  
15 loops=1)  
         Index Cond: (tbl_cost_align.id > 2000000)  
         Buffers: shared hit=8191  
 Total runtime: 2955.816 ms  
(9 rows)  

当effective_cache_size还是小于表和索引时, 执行计划依旧正确

digoal=# set effective_cache_size='280MB';  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                   QUERY PLAN                                                         
               
------------------------------------------------------------------------------------------------------------------------------------  
-------------  
 Bitmap Heap Scan on public.tbl_cost_align  (cost=31446.89..96946.93 rows=2996963 width=45) (actual time=963.845..2060.463 rows=2997  
015 loops=1)  
   Output: id, info, crt_time  
   Recheck Cond: (tbl_cost_align.id > 2000000)  
   Rows Removed by Index Recheck: 2105  
   Buffers: shared hit=36229  
   ->  Bitmap Index Scan on tbl_cost_align_id  (cost=0.00..30697.65 rows=2996963 width=0) (actual time=959.673..959.673 rows=2997015  
 loops=1)  
         Index Cond: (tbl_cost_align.id > 2000000)  
         Buffers: shared hit=8191  
 Total runtime: 2515.649 ms  
(9 rows)  

当effective_cache_size大于表和索引的大小时, index scan的成本低于bitmap scan的成本了.

When effective_cache_size large then table and index's size. then use index scan first than bitmap scan.  
digoal=# set effective_cache_size='283MB';  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                         QUERY PLAN                                                   
                           
------------------------------------------------------------------------------------------------------------------------------------  
-------------------------  
 Index Scan using tbl_cost_align_id on public.tbl_cost_align  (cost=0.43..92030.24 rows=2996963 width=45) (actual time=0.045..5238.3  
61 rows=2997015 loops=1)  
   Output: id, info, crt_time  
   Index Cond: (tbl_cost_align.id > 2000000)  
   Buffers: shared hit=3005084  
 Total runtime: 5689.583 ms  
(5 rows)  

如果这个时候再把random_page_cost调回正常值10, 则执行计划回归正常.

digoal=# set random_page_cost=10;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                                    QUERY PLAN                                                        
                 
------------------------------------------------------------------------------------------------------------------------------------  
---------------  
 Bitmap Heap Scan on public.tbl_cost_align  (cost=105426.89..170926.93 rows=2996963 width=45) (actual time=918.225..2195.414 rows=29  
97015 loops=1)  
   Output: id, info, crt_time  
   Recheck Cond: (tbl_cost_align.id > 2000000)  
   Rows Removed by Index Recheck: 2105  
   Buffers: shared hit=36229  
   ->  Bitmap Index Scan on tbl_cost_align_id  (cost=0.00..104677.65 rows=2996963 width=0) (actual time=913.935..913.935 rows=299701  
5 loops=1)  
         Index Cond: (tbl_cost_align.id > 2000000)  
         Buffers: shared hit=8191  
 Total runtime: 2698.429 ms  
(9 rows)  
  
digoal=# set enable_seqscan=on;  
SET  
digoal=# explain (analyze,costs,buffers,timing,verbose) select * from tbl_cost_align where id>2000000;  
                                                            QUERY PLAN                                                               
-----------------------------------------------------------------------------------------------------------------------------------  
 Seq Scan on public.tbl_cost_align  (cost=0.00..65538.00 rows=2996963 width=45) (actual time=0.020..1522.791 rows=2997015 loops=1)  
   Output: id, info, crt_time  
   Filter: (tbl_cost_align.id > 2000000)  
   Rows Removed by Filter: 2985  
   Buffers: shared hit=28038  
 Total runtime: 2104.057 ms  
(6 rows)  

本例说明了成本因子的重要性. 千万不能随意设置, 即使完全内存命中, random_page_cost也应该大于seq_page_cost.

我在前一篇BLOG中测试了这样的场景, 完全内存命中的场景可以设置 random_page_cost=1.6; seq_page_cost=1;

《优化器成本因子校对 - PostgreSQL explain cost constants alignment to timestamp》

B-TREE扫描,对于线性相关性不好的列,会放大HEAP SCAN 的IO消耗,使用bitmap可以解决。

线性相关性的知识如下

《PostgreSQL 计算 任意类型 字段之间的线性相关性》

《PostgreSQL 统计信息之 - 逻辑与物理存储的线性相关性》

小结

1. 当字段的存储与值线性相关性差时,使用index scan会导致大量的HEAP SCAN IO放大。

2. bitmap index scan巧妙的解决了放大的问题,bitmap index scan对index item按照ctid(heap行号)排序后再取数据,避免了单个HEAP PAGE的重复IO。

3. 使用cluster对heap数据按索引顺序进行重排,也可以解决HEAP SCAN IO放大的问题。

参考

1. http://www.postgresql.org/message-id/flat/13668.1398541533@sss.pgh.pa.us#13668.1398541533@sss.pgh.pa.us

2. 《优化器成本因子校对 - PostgreSQL explain cost constants alignment to timestamp》

3. src/backend/optimizer/path/costsize.c

cost_index function :   
        /*  
         * Now interpolate based on estimated index order correlation to get total  
         * disk I/O cost for main table accesses.  
         */  
        csquared = indexCorrelation * indexCorrelation;  
  
        run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);  
相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
6月前
|
设计模式 缓存 Java
【Java技术专题】「入门到精通系列教程」深入探索Java特性中并发编程体系的原理和实战开发指南( 实现可伸缩IO专题)— 上
【Java技术专题】「入门到精通系列教程」深入探索Java特性中并发编程体系的原理和实战开发指南( 实现可伸缩IO专题)— 上
77 0
|
5月前
|
存储 缓存 NoSQL
Redis为什么速度快:数据结构、存储及IO网络原理总结
Redis为什么速度快:数据结构、存储及IO网络原理总结
|
6月前
|
缓存 Java 数据库
深入理解 Java IO 流:原理与应用
【4月更文挑战第4天】Java IO 浴是处理文件和数据输入输出的关键,涉及数据传输和处理。核心概念包括输入流(从源头读取)和输出流(写入目标),由InputStream和OutputStream接口定义基础操作。具体实现如FileInputStream和FileOutputStream用于文件操作,BufferedInputStream和BufferedOutputStream提升性能。IO流广泛应用于文件操作、网络通信、数据库交互和系统交互。其优点在于灵活性、可扩展性和高效性。使用时注意关闭流、处理异常及选择合适流实现。理解IO流原理和应用能提升编程效率和程序性能。
168 1
|
6月前
|
传感器 编解码 C语言
【软件设计师备考 专题 】IO设备、通信设备的性能,以及基本工作原理
【软件设计师备考 专题 】IO设备、通信设备的性能,以及基本工作原理
84 1
|
6月前
|
Java 大数据 数据库
【Spring底层原理高级进阶】Spring Batch清洗和转换数据,一键处理繁杂数据!Spring Batch是如何实现IO流优化的?本文详解!
【Spring底层原理高级进阶】Spring Batch清洗和转换数据,一键处理繁杂数据!Spring Batch是如何实现IO流优化的?本文详解!
|
6月前
io.lettuce.core.RedisCommandTimeoutException: Command timed out 解决办法
io.lettuce.core.RedisCommandTimeoutException: Command timed out 解决办法
71 0
|
6月前
|
NoSQL Java Redis
SpringBoot连接Redis出现io.lettuce.core.RedisCommandTimeoutException:Commandtimedout解决办法
SpringBoot连接Redis出现io.lettuce.core.RedisCommandTimeoutException:Commandtimedout解决办法
204 0
|
6月前
|
Java 数据处理
fastdfs源码阅读:文件传输原理与网络IO模型(accept线程、work线程(网络io处理)、dio线程(文件io处理))
fastdfs源码阅读:文件传输原理与网络IO模型(accept线程、work线程(网络io处理)、dio线程(文件io处理))
94 0
|
3月前
|
存储 Java
【IO面试题 四】、介绍一下Java的序列化与反序列化
Java的序列化与反序列化允许对象通过实现Serializable接口转换成字节序列并存储或传输,之后可以通过ObjectInputStream和ObjectOutputStream的方法将这些字节序列恢复成对象。
|
4月前
|
Java 大数据
解析Java中的NIO与传统IO的区别与应用
解析Java中的NIO与传统IO的区别与应用