[leetcode/lintcode 题解] 阿里算法面试题:切割剩余金属

简介: [leetcode/lintcode 题解] 阿里算法面试题:切割剩余金属

描述
金属棒工厂的厂长拥有 n 根多余的金属棒。当地的一个承包商提出,只要所有的棒材具有相同的长度(用 saleLength 表示棒材的长度),就将金属棒工厂的剩余棒材全部购买。厂长可以通过将每根棒材切割零次或多次来增加可销售的棒材数量,但是每次切割都会产生一定的成本(用 costPerCut 表示每次切割的成本)。等所有的切割完成以后,多余的棒材将被丢弃,没有利润。金属棒工厂的厂长获得的销售总利润计算公式如下:
totalProfit = totalUniformRods saleLength salePrice - totalCuts * costPerCut
其中 totalUniformRods 是可销售的金属棒数量,salePrice 是承包商同意支付的每单位长度价格,totalCuts是需要切割棒材的次数。

1≤n≤501≤n≤50
1≤lengths[i]≤1041≤lengths[i]≤10^4
1≤salePrice,costPerCut≤1031≤salePrice,costPerCut≤10^3

在线评测地址:领扣题库官网
https://www.lintcode.com/problem/1917/?utm_source=sc-tianchi-sz-0412

样例1
输入:
1
10
[30,59,110]
输出:
1913

算法 :模拟、暴力
解题思路
因为金属数量比较少,可以使用暴力遍历来寻找最优切割长度,在计算时要注意切割次数,如果刚好能够切成整数份(没有剩余金属)的话,是可以少切一刀的。
复杂度分析
时间复杂度:O(L*n)
L是最长金属的长度,n为金属数量
空间复杂度:O(1)
不需要额外空间
源代码

public class Solution {
    /**
     * @param costPerCut: integer cost to make a cut 
     * @param salePrice: integer per unit length sales price 
     * @param lengths: an array of integer rod lengths 
     * @return: The function must return an integer that denotes the maximum possible profit. 
     */
    public int maxProfit(int costPerCut, int salePrice, int[] lengths) {
        int profit = 0;
        int maxLen = 0;
        for (int i = 0; i < lengths.length; i++) {
            maxLen = Math.max(maxLen, lengths[i]);
        }
        
        for (int length = 1; length <= maxLen; length++) {
            int cut = 0, pieces = 0;
            for (int i = 0; i < lengths.length; i++) {
                int curCut = (lengths[i] - 1) / length;
                int curPiece = lengths[i] / length;
                if (length * salePrice * curPiece - costPerCut * curCut > 0) {
                    cut += curCut;
                    pieces += curPiece;
                }
            }
            profit = Math.max(profit, length * salePrice * pieces - costPerCut * cut);
        }
        
        return profit;
    }
}

更多题解参考:九章官网solution

相关文章
|
29天前
|
存储 关系型数据库 MySQL
阿里面试:为什么要索引?什么是MySQL索引?底层结构是什么?
尼恩是一位资深架构师,他在自己的读者交流群中分享了关于MySQL索引的重要知识点。索引是帮助MySQL高效获取数据的数据结构,主要作用包括显著提升查询速度、降低磁盘I/O次数、优化排序与分组操作以及提升复杂查询的性能。MySQL支持多种索引类型,如主键索引、唯一索引、普通索引、全文索引和空间数据索引。索引的底层数据结构主要是B+树,它能够有效支持范围查询和顺序遍历,同时保持高效的插入、删除和查找性能。尼恩还强调了索引的优缺点,并提供了多个面试题及其解答,帮助读者在面试中脱颖而出。相关资料可在公众号【技术自由圈】获取。
|
9天前
|
SQL 关系型数据库 MySQL
阿里面试:1000万级大表, 如何 加索引?
45岁老架构师尼恩在其读者交流群中分享了如何在生产环境中给大表加索引的方法。文章详细介绍了两种索引构建方式:在线模式(Online DDL)和离线模式(Offline DDL),并深入探讨了 MySQL 5.6.7 之前的“影子策略”和 pt-online-schema-change 方案,以及 MySQL 5.6.7 之后的内部 Online DDL 特性。通过这些方法,可以有效地减少 DDL 操作对业务的影响,确保数据的一致性和完整性。尼恩还提供了大量面试题和解决方案,帮助读者在面试中充分展示技术实力。
|
1月前
|
消息中间件 存储 canal
阿里面试:canal+MQ,会有乱序的问题吗?
本文详细探讨了在阿里面试中常见的问题——“canal+MQ,会有乱序的问题吗?”以及如何保证RocketMQ消息有序。文章首先介绍了消息有序的基本概念,包括全局有序和局部有序,并分析了RocketMQ中实现消息有序的方法。接着,针对canal+MQ的场景,讨论了如何通过配置`canal.mq.partitionsNum`和`canal.mq.partitionHash`来保证数据同步的有序性。最后,提供了多个与MQ相关的面试题及解决方案,帮助读者更好地准备面试,提升技术水平。
阿里面试:canal+MQ,会有乱序的问题吗?
|
1月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩分享分库分表的基因算法设计,涵盖分片键选择、水平拆分策略及基因法优化查询效率等内容,助力面试者应对大厂技术面试,提高架构设计能力。
美团面试:百亿级分片,如何设计基因算法?
|
30天前
|
机器学习/深度学习 算法 Java
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
机器学习、基础算法、python常见面试题必知必答系列大全:(面试问题持续更新)
|
1月前
|
消息中间件 架构师 Java
阿里面试:秒杀的分布式事务, 是如何设计的?
在40岁老架构师尼恩的读者交流群中,近期有小伙伴在面试阿里、滴滴、极兔等一线互联网企业时,遇到了许多关于分布式事务的重要面试题。为了帮助大家更好地应对这些面试题,尼恩进行了系统化的梳理,详细介绍了Seata和RocketMQ事务消息的结合,以及如何实现强弱结合型事务。文章还提供了分布式事务的标准面试答案,并推荐了《尼恩Java面试宝典PDF》等资源,帮助大家在面试中脱颖而出。
|
1月前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
1月前
|
Kubernetes 架构师 算法
阿里面试:全国14亿人,统计出重名最多的前100个姓名
文章介绍了如何解决“从全国14亿人的数据中统计出重名人数最多的前100位姓名”的面试题,详细分析了多种数据结构的优缺点,最终推荐使用前缀树(Trie)+小顶堆的组合。文章还提供了具体的Java代码实现,并讨论了在内存受限情况下的解决方案,强调了TOP N问题的典型解题思路。最后,鼓励读者通过系统化学习《尼恩Java面试宝典》提升面试技巧。
阿里面试:全国14亿人,统计出重名最多的前100个姓名
|
1月前
|
算法 Java 数据库
美团面试:百亿级分片,如何设计基因算法?
40岁老架构师尼恩在读者群中分享了关于分库分表的基因算法设计,旨在帮助大家应对一线互联网企业的面试题。文章详细介绍了分库分表的背景、分片键的设计目标和建议,以及基因法的具体应用和优缺点。通过系统化的梳理,帮助读者提升架构、设计和开发水平,顺利通过面试。
美团面试:百亿级分片,如何设计基因算法?
|
2月前
|
Unix Shell Linux
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
本文提供了几个Linux shell脚本编程问题的解决方案,包括转置文件内容、统计词频、验证有效电话号码和提取文件的第十行,每个问题都给出了至少一种实现方法。
LeetCode刷题 Shell编程四则 | 194. 转置文件 192. 统计词频 193. 有效电话号码 195. 第十行
下一篇
无影云桌面