深入了解机器学习决策树模型——C4.5算法

简介: 云栖号资讯:【点击查看更多行业资讯】在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来! 上一篇文章当中介绍了一种最简单构造决策树的方法——ID3算法,也就是每次选择一个特征进行拆分数据。

云栖号资讯:【点击查看更多行业资讯
在这里您可以找到不同行业的第一手的上云资讯,还在等什么,快来!


之前介绍了一种最简单构造决策树的方法——ID3算法,也就是每次选择一个特征进行拆分数据。这个特征有多少个取值那么就划分出多少个分叉,整个建树的过程非常简单。

如果你还不会决策树,那你一定要进来看看

既然我们已经有了ID3算法可以实现决策树,那么为什么还需要新的算法?显然一定是做出了一些优化或者是进行了一些改进,不然新算法显然是没有意义的。所以在我们学习新的算法之前,需要先搞明白,究竟做出了什么改进,为什么要做出这些改进。

一般来说,改进都是基于缺点和不足的,所以我们先来看看ID3算法的一些问题。

其中最大的问题很明显,就是它无法处理连续性的特征。不能处理的原因也很简单,因为ID3在每次在切分数据的时候,选择的不是一个特征的取值,而是一个具体的特征。这个特征下有多少种取值就会产生多少个分叉,如果使用连续性特征的话,比如说我们把西瓜的直径作为特征的话。那么理论上来说每个西瓜的直径都是不同的,这样的数据丢进ID3算法当中就会产生和样本数量相同的分叉,这显然是没有意义的。

其实还有一个问题,藏得会比较深一点,是关于信息增益的。我们用划分前后的信息熵的差作为信息增益,然后我们选择带来最大信息增益的划分。这里就有一个问题了,这会导致模型在选择的时候,倾向于选择分叉比较多的特征。极端情况下,就比如说是连续性特征好了,每个特征下都只有一个样本,那么这样算出来得到的信息熵就是0,这样得到的信息增益也就非常大。这是不合理的,因为分叉多的特征并不一定划分效果就好,整体来看并不一定是有利的。

针对这两个问题,提出了改进方案,也就是说C4.5算法。严格说起来它并不是独立的算法,只是ID3算法的改进版本。

下面我们依次来看看C4.5算法究竟怎么解决这两个问题。

信息增益比

首先,我们来看信息增益的问题。前面说了,如果我们单纯地用信息增益去筛选划分的特征,那么很容易陷入陷阱当中,选择了取值更多的特征。

针对这个问题,我们可以做一点调整,我们把信息增益改成信息增益比。所谓的信息增益比就是用信息增益除以我们这个划分本身的信息熵,从而得到一个比值。对于分叉很多的特征,它的自身的信息熵也会很大。因为分叉多,必然导致纯度很低。所以我们这样可以均衡一下特征分叉带来的偏差,从而让模型做出比较正确的选择。

我们来看下公式,真的非常简单:

1

这里的D就是我们的训练样本集,a是我们选择的特征,IV(a)就是这个特征分布的信息熵。

我们再来看下IV的公式:

2

解释一下这里的值,这里的V是特征a所有取值的集合。自然就是每一个v对应的占比,所以这就是一个特征a的信息熵公式。

处理连续值

C4.5算法对于连续值同样进行了优化,支持了连续值,支持的方式也非常简单,对于特征a的取值集合V来说,我们选择一个阈值t进行划分,将它划分成小于t的和大于t的两个部分。

也就是说C4.5算法对于连续值的切分和离散值是不同的,对于离散值变量,我们是对每一种取值进行切分,而对于连续值我们只切成两份。其实这个设计非常合理,因为对于大多数情况而言,每一条数据的连续值特征往往都是不同的。而且我们也没有办法很好地确定对于连续值特征究竟分成几个部分比较合理,所以比较直观的就是固定切分成两份,总比无法用上好。

在极端情况下,连续值特征的取值数量等于样本条数,那么我们怎么选择这个阈值呢?即使我们遍历所有的切分情况,也有n-1种,这显然是非常庞大的,尤其在样本数量很大的情况下。

针对这个问题,也有解决的方法,就是按照特征值排序,选择真正意义上的切分点。什么意思呢,我们来看一份数据:

3

这份数据是我们队西瓜直径这个特征排序之后的结果,我们可以看出来,训练目标改变的值其实只有3个,分别是直径5,7还有8的时候,我们只需要考虑这三种情况就好了,其他的情况可以不用考虑。

我们综合考虑这两点,然后把它们加在之前ID3模型的实现上就好了。

代码实现

光说不练假把式,我们既然搞明白了它的原理,就得自己亲自动手实现以下才算是真的理解,很多地方的坑也才算是真的懂。我们基本上可以沿用之前的代码,不过需要在之前的基础上做一些修改。

首先我们先来改造构造数据的部分,我们依然沿用上次的数据,学生的三门考试等级以及它是否通过达标的数据。我们认为三门成绩在150分以上算是达标,大于70分的课程是2等级,40-70分之间是1等级,40分以下是0等级。在此基础上我们增加了分数作为特征,我们在分数上增加了一个误差,避免模型直接得到结果。

4

由于我们需要计算信息增益比,所以需要开发一个专门的函数用来计算信息增益比。由于这一次的数据涉及到了连续型特征,所以我们需要多传递一个阈值,来判断是否是连续性特征。如果是离散型特征,那么阈值为None,否则为具体的值。

5

split_dataset函数也需要修改,因为我们拆分的情况多了一种根据阈值拆分,通过判断阈值是否为None来判断进行阈值划分还是特征划分。

6

前面说了我们在选择阈值的时候其实并不一定要遍历所有的取值,因为有些取值并不会引起label分布的变化,对于这种取值我们就可以忽略。所以我们需要一个函数来获取阈值所有的可能性,这个也很简单,我们直接根据阈值排序,然后遍历观察label是否会变化,记录下所有label变化位置的值即可:

7

有了这些方法之后,我们需要开发选择拆分值的函数,也就是计算所有特征的信息增益比,找到信息增益比最大的特征进行拆分。其实我们将前面拆分和获取所有阈值的函数都开发完了之后,要寻找最佳的拆分点就很容易了,基本上就是利用一下之前开发好的代码,然后搜索一下所有的可能性:

8

到这里,基本方法就开发完了,只剩下建树和预测两个方法了。这两个方法和之前的代码改动都不大,基本上就是细微的变化。我们先来看建树,建树唯一的不同点就是在dict当中需要额外存储一份阈值的信息。如果是None表示离散特征,不为None为连续性特征,其他的逻辑基本不变。

9

最后是预测的函数,逻辑和之前一样,只不过加上了阈值是否为None的判断而已,应该非常简单:

10

总结

到这里整个决策树的C4.5算法就开发完了,整体来说由于加上了信息增益比以及连续性特征的逻辑,所以整体的代码比之前要复杂一些,但是基本上的逻辑和套路都是一脉相承的,基本上没什么太大的变化。

决策树说起原理来非常简单,但是很多细节如果没有亲自做过是意识不到的。比如说连续性特征的阈值集合应该怎么找,比如说连续性特征和离散型的特征混合的情况,怎么在代码当中区分,等等。只有实际动手做过,才能意识到这些问题。虽然平时也用不到决策树这个模型,但是它是很多高级模型的基础,吃透它对后面的学习和进阶非常有帮助,如果有空,推荐大家都亲自试一试。

【云栖号在线课堂】每天都有产品技术专家分享!
课程地址:https://yqh.aliyun.com/live

立即加入社群,与专家面对面,及时了解课程最新动态!
【云栖号在线课堂 社群】https://c.tb.cn/F3.Z8gvnK

原文发布时间:2020-05-29
本文作者:承志
本文来自:“掘金”,了解相关信息可以关注“掘金”

相关文章
|
3月前
|
机器学习/深度学习 存储 算法
决策树和随机森林在机器学习中的应用
在机器学习领域,决策树(Decision Tree)和随机森林(Random Forest)是两种非常流行且强大的分类和回归算法。它们通过模拟人类决策过程,将复杂的数据集分割成易于理解和处理的子集,从而实现对新数据的准确预测。
130 10
|
5天前
|
机器学习/深度学习 数据可视化 大数据
机器学习与大数据分析的结合:智能决策的新引擎
机器学习与大数据分析的结合:智能决策的新引擎
64 15
|
1月前
|
机器学习/深度学习 数据采集 算法
机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用
医疗诊断是医学的核心,其准确性和效率至关重要。本文探讨了机器学习在医疗诊断中的前沿应用,包括神经网络、决策树和支持向量机等方法,及其在医学影像、疾病预测和基因数据分析中的具体应用。文章还讨论了Python在构建机器学习模型中的作用,面临的挑战及应对策略,并展望了未来的发展趋势。
117 1
|
1月前
|
算法
树的遍历算法有哪些?
不同的遍历算法适用于不同的应用场景。深度优先搜索常用于搜索、路径查找等问题;广度优先搜索则在图的最短路径、层次相关的问题中较为常用;而二叉搜索树的遍历在数据排序、查找等方面有重要应用。
39 2
|
2月前
|
存储 算法 关系型数据库
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
这篇文章主要介绍了多路查找树的基本概念,包括二叉树的局限性、多叉树的优化、B树及其变体(如2-3树、B+树、B*树)的特点和应用,旨在帮助读者理解这些数据结构在文件系统和数据库系统中的重要性和效率。
32 0
数据结构与算法学习二一:多路查找树、二叉树与B树、2-3树、B+树、B*树。(本章为了解基本知识即可,不做代码学习)
|
3月前
|
大数据 UED 开发者
实战演练:利用Python的Trie树优化搜索算法,性能飙升不是梦!
在数据密集型应用中,高效搜索算法至关重要。Trie树(前缀树/字典树)通过优化字符串处理和搜索效率成为理想选择。本文通过Python实战演示Trie树构建与应用,显著提升搜索性能。Trie树利用公共前缀减少查询时间,支持快速插入、删除和搜索。以下为简单示例代码,展示如何构建及使用Trie树进行搜索与前缀匹配,适用于自动补全、拼写检查等场景,助力提升应用性能与用户体验。
71 2
|
3月前
|
机器学习/深度学习 数据采集 监控
探索机器学习:从数据到决策
【9月更文挑战第18天】在这篇文章中,我们将一起踏上一段激动人心的旅程,穿越机器学习的世界。我们将探讨如何通过收集和处理数据,利用算法的力量来预测未来的趋势,并做出更加明智的决策。无论你是初学者还是有经验的开发者,这篇文章都将为你提供新的视角和思考方式。
|
2月前
|
存储 算法
数据结构与算法学习十六:树的知识、二叉树、二叉树的遍历(前序、中序、后序、层次)、二叉树的查找(前序、中序、后序、层次)、二叉树的删除
这篇文章主要介绍了树和二叉树的基础知识,包括树的存储方式、二叉树的定义、遍历方法(前序、中序、后序、层次遍历),以及二叉树的查找和删除操作。
34 0
|
2月前
|
存储 算法 Java
数据结构和算法--分段树
数据结构和算法--分段树
25 0