Java并发编程实战 01并发编程的Bug源头

简介:

Java并发编程实战 01并发编程的Bug源头

摘要#
编写正确的并发程序对我来说是一件极其困难的事情,由于知识不足,只知道synchronized这个修饰符进行同步。
本文为学习极客时间:Java并发编程实战 01的总结,文章取图也是来自于该文章

并发Bug源头#
在计算机系统中,程序的执行速度为:CPU > 内存 > I/O设备 ,为了平衡这三者的速度差异,计算机体系机构、操作系统、编译程序都进行了优化:

1.CPU增加了缓存,以均衡和内存的速度差异
2.操作系统增加了进程、线程,已分时复用CPU,以均衡 CPU 与 I/O 设备的速度差异
3.编译程序优化指令执行顺序,使得缓存能够更加合理的利用。

但是这三者导致的问题为:可见性、原子性、有序性

源头之一:CPU缓存导致的可见性问题#
一个线程对共享变量的修改,另外一个线程能够立即看到,那么就称为可见性。
现在多核CPU时代中,每颗CPU都有自己的缓存,CPU之间并不会共享缓存;

如线程A从内存读取变量V到CPU-1,操作完成后保存在CPU-1缓存中,还未写到内存中。
此时线程B从内存读取变量V到CPU-2中,而CPU-1缓存中的变量V对线程B是不可见的
当线程A把更新后的变量V写到内存中时,线程B才可以从内存中读取到最新变量V的值

上述过程就是线程A修改变量V后,对线程B不可见,那么就称为可见性问题。

源头之二:线程切换带来的原子性问题#
现代的操作系统都是基于线程来调度的,现在提到的“任务切换”都是指“线程切换”
Java并发程序都是基于多线程的,自然也会涉及到任务切换,在高级语言中,一条语句可能就需要多条CPU指令完成,例如在代码 count += 1 中,至少需要三条CPU指令。

指令1:把变量 count 从内存加载到CPU的寄存器中
指令2:在寄存器中把变量 count + 1
指令3:把变量 count 写入到内存(缓存机制导致可能写入的是CPU缓存而不是内存)

操作系统做任务切换,可以发生在任何一条CPU指令执行完,所以并不是高级语言中的一条语句,不要被 count += 1 这个操作蒙蔽了双眼。假设count = 0,线程A执行完 指令1 后 ,做任务切换到线程B执行了 指令1、指令2、指令3后,再做任务切换回线程A。我们会发现虽然两个线程都执行了 count += 1 操作。但是得到的结果并不是2,而是1。

如果 count += 1 是一个不可分割的整体,线程的切换可以发生在 count += 1 之前或之后,但是不会发生在中间,就像个原子一样。我们把一个或者多个操作在 CPU 执行的过程中不被中断的特性称为原子性

源头之三:编译优化带来的有序性问题#
有序性指的是程序按照代码的先后顺序执行。编译器为了优化性能,可能会改变程序中的语句执行先后顺序。如:a = 1; b = 2;,编译器可能会优化成:b = 2; a = 1。在这个例子中,编译器优化了程序的执行先后顺序,并不影响结果。但是有时候优化后会导致意想不到的Bug。
在单例模式的双重检查创建单例对象中。如下代码:

Copy
public class Singleton {

private static Singleton instance;
private Singleton() {}
public static Singleton getInstance() {
    if (instance == null) {
        synchronized (Singleton.class) {
            if (instance == null) {
                instance = new Singleton();
            }
        }
    }
    return instance;
}

}
问题出现在了new Singletion()这行代码,我们以为的执行顺序应该是这样的:

指令1:分配一块内存M
指令2:在内存M中实例化Singleton对象
指令3:instance变量指向内存地址M

但是实际优化后的执行路径确实这样的:

指令1:分配一块内存M
指令2:instance变量指向内存地址M
指令3:在内存M中实例化Singleton对象

这样的话看出来什么问题了吗?当线程A执行完了指令2后,切换到了线程B,
线程B判断到 if (instance != null)。直接返回instance,但是此时的instance还是没有被实例化的啊!所以这时候我们使用instance可能就会触发空指针异常了。如图:

总结#
在写并发程序的时候,需要时刻注意可见性、原子性、有序性的问题。在深刻理解这三个问题后,写起并发程序也会少一点Bug啦~。记住了下面这段话:CPU缓存会带来可见性问题、线程切换带来的原子性问题、编译优化带来的有序性问题。

参考文章:极客时间:Java并发编程实战 01 | 可见性、原子性和有序性问题:并发编程Bug的源头

如果我的文章帮助到您,可以关注我的微信公众号,第一时间分享文章给您

作者: Johnson木木

出处:https://www.cnblogs.com/Johnson-lin/p/12697533.html

相关文章
|
17天前
|
安全 Java 程序员
深入理解Java内存模型与并发编程####
本文旨在探讨Java内存模型(JMM)的复杂性及其对并发编程的影响,不同于传统的摘要形式,本文将以一个实际案例为引子,逐步揭示JMM的核心概念,包括原子性、可见性、有序性,以及这些特性在多线程环境下的具体表现。通过对比分析不同并发工具类的应用,如synchronized、volatile关键字、Lock接口及其实现等,本文将展示如何在实践中有效利用JMM来设计高效且安全的并发程序。最后,还将简要介绍Java 8及更高版本中引入的新特性,如StampedLock,以及它们如何进一步优化多线程编程模型。 ####
21 0
|
19天前
|
Java 程序员
Java编程中的异常处理:从基础到高级
在Java的世界中,异常处理是代码健壮性的守护神。本文将带你从异常的基本概念出发,逐步深入到高级用法,探索如何优雅地处理程序中的错误和异常情况。通过实际案例,我们将一起学习如何编写更可靠、更易于维护的Java代码。准备好了吗?让我们一起踏上这段旅程,解锁Java异常处理的秘密!
|
3天前
|
算法 Java 调度
java并发编程中Monitor里的waitSet和EntryList都是做什么的
在Java并发编程中,Monitor内部包含两个重要队列:等待集(Wait Set)和入口列表(Entry List)。Wait Set用于线程的条件等待和协作,线程调用`wait()`后进入此集合,通过`notify()`或`notifyAll()`唤醒。Entry List则管理锁的竞争,未能获取锁的线程在此排队,等待锁释放后重新竞争。理解两者区别有助于设计高效的多线程程序。 - **Wait Set**:线程调用`wait()`后进入,等待条件满足被唤醒,需重新竞争锁。 - **Entry List**:多个线程竞争锁时,未获锁的线程在此排队,等待锁释放后获取锁继续执行。
25 12
|
3天前
|
Java
Java基础却常被忽略:全面讲解this的实战技巧!
本次分享来自于一道Java基础的面试试题,对this的各种妙用进行了深度讲解,并分析了一些关于this的常见面试陷阱,主要包括以下几方面内容: 1.什么是this 2.this的场景化使用案例 3.关于this的误区 4.总结与练习
|
16天前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
16天前
|
Java 调度
Java中的多线程编程与并发控制
本文深入探讨了Java编程语言中多线程编程的基础知识和并发控制机制。文章首先介绍了多线程的基本概念,包括线程的定义、生命周期以及在Java中创建和管理线程的方法。接着,详细讲解了Java提供的同步机制,如synchronized关键字、wait()和notify()方法等,以及如何通过这些机制实现线程间的协调与通信。最后,本文还讨论了一些常见的并发问题,例如死锁、竞态条件等,并提供了相应的解决策略。
40 3
|
19天前
|
Java 程序员
Java基础却常被忽略:全面讲解this的实战技巧!
小米,29岁程序员,分享Java中`this`关键字的用法。`this`代表当前对象引用,用于区分成员变量与局部变量、构造方法间调用、支持链式调用及作为参数传递。文章还探讨了`this`在静态方法和匿名内部类中的使用误区,并提供了练习题。
20 1
|
21天前
|
开发框架 安全 Java
Java 反射机制:动态编程的强大利器
Java反射机制允许程序在运行时检查类、接口、字段和方法的信息,并能操作对象。它提供了一种动态编程的方式,使得代码更加灵活,能够适应未知的或变化的需求,是开发框架和库的重要工具。
36 2
|
22天前
|
安全 Java 开发者
Java中的多线程编程:从基础到实践
本文深入探讨了Java多线程编程的核心概念和实践技巧,旨在帮助读者理解多线程的工作原理,掌握线程的创建、管理和同步机制。通过具体示例和最佳实践,本文展示了如何在Java应用中有效地利用多线程技术,提高程序性能和响应速度。
54 1
|
6月前
|
Java C++
关于《Java并发编程之线程池十八问》的补充内容
【6月更文挑战第6天】关于《Java并发编程之线程池十八问》的补充内容
53 5
下一篇
DataWorks