【独家科普】揭秘大数据的分析方法

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介:     编注:“大数据文摘”的很多读者亲友,一些纯粹的大数据爱好者,甚至有一部分企业管理者经常在后台向我们建议,希望我们能把大数据的分析系统做一个简单的介绍,不要“只见案例,不见原理”。于是Larry就自告奋勇来为大家做一个科普,带领读者亲友们一探究竟,让我们来揭开大数据推荐系统神秘的面纱!     说到大数据,神马根据数据进行精准营销啊,神马更了解你的客户啊,神马啤酒尿布超市推送商品预测怀孕亚马逊预测式发货等等,你谷歌百度搜狗有道一气,都是说推荐系统如何如何牛逼的,但是没人介绍推荐系统到底是啥样的。

 

  编注:“大数据文摘”的很多读者亲友,一些纯粹的大数据爱好者,甚至有一部分企业管理者经常在后台向我们建议,希望我们能把大数据的分析系统做一个简单的介绍,不要“只见案例,不见原理”。于是Larry就自告奋勇来为大家做一个科普,带领读者亲友们一探究竟,让我们来揭开大数据推荐系统神秘的面纱!

 

  说到大数据,神马根据数据进行精准营销啊,神马更了解你的客户啊,神马啤酒尿布超市推送商品预测怀孕亚马逊预测式发货等等,你谷歌百度搜狗有道一气,都是说推荐系统如何如何牛逼的,但是没人介绍推荐系统到底是啥样的。今天来八一八。过年了,干货全当送礼。

  先看看系统架构吧。大多推荐系统架构基本是这样的:

  架构图看了,那就分别细说一下。

   先说数据底层。或者叫基础数据层。这一层基本是在做数据的整合和批量处理。数据整合主要是整合产品系统的用户行为、日志等数据和相关运营监控系统的数据。一般是以客户的id为主键或key,形成一个大宽表。之后通过算法的批量计算进行聚类,分类等操作。形成的数据结果反馈至中间计算层。

   中间计算层通过基础数据层的结果进行实时的小批量计算,将结果推送到进线计算层。

   进线计算层结合中间计算层的结果和用户的实时使用和反馈进行结合。实时给出结果。

   呵呵,是不是和看绕口令一样?那看下面的例子。

   你要听歌。打开一个appapp里面就会有“今日推荐”,这个基本上是中间计算层的数据。还有一个就是猜你喜欢。“猜你喜欢”基本上是进线计算层的数据。还有就是音乐类型啊,场景啊,这个基本上就是基础数据层的批处理跑出来的。

   上面的内容权作科普。基本上告诉了大家推荐系统的架构是怎样的。

   下面来点真正的干货!


 1.推荐系统依赖全量数据。以一个音乐app产品为例。用的人多,反馈越多,可用作分析的用户数据就越多。数据越多,那些原本的数据挖掘算法,就会基于你的这个app训练得更好。或者说更适合于你自己的产品。所以说,你要想做一个好的app,花钱做推广吧。

2.算法很重要,但是需要逐步完善。算法是一个工具,工具用的好需要好的工匠。工程师作为工匠要快速的进行算法的完善,以便能够符合app的长期运营战略。以音乐app产品为例,短期的算法改进可能会让你有大量的用户,但是由于多种因素变化,某个或某些算法可能存在“半衰期”--就是说基于这个算法,你改进了很多次,但是计算结果用户都不喜欢。这个其实就是需要一个长期的稳健的规划。如何设计和改进你的算法策略和算法计划很关键。

3.了解你的产品。不管你的推荐系统是应用的电商网站,还是用于音乐app,还是其他。了解你的产品本身很重要。例如音乐类app产品,在应用中,用户对音乐场景的选择粘度要远高于对音乐类型的选择粘度--“忧伤时候必须听的歌”,“失恋必听30首”这样的歌单的点击会高于“R&B;最牛100首”,“史上重金属经典50首”这样的歌单。这种情况下其实算法是帮不了你的,只能通过你对产品的感情了。



原文发布时间为:2014-01-25

本文来自云栖社区合作伙伴“大数据文摘”,了解相关信息可以关注“BigDataDigest”微信公众号
相关实践学习
基于MaxCompute的热门话题分析
Apsara Clouder大数据专项技能认证配套课程:基于MaxCompute的热门话题分析
相关文章
|
20天前
|
存储 分布式计算 大数据
基于Python大数据的的电商用户行为分析系统
本系统基于Django、Scrapy与Hadoop技术,构建电商用户行为分析平台。通过爬取与处理海量用户数据,实现行为追踪、偏好分析与个性化推荐,助力企业提升营销精准度与用户体验,推动电商智能化发展。
|
2月前
|
数据可视化 搜索推荐 大数据
基于python大数据的北京旅游可视化及分析系统
本文深入探讨智慧旅游系统的背景、意义及研究现状,分析其在旅游业中的作用与发展潜力,介绍平台架构、技术创新、数据挖掘与服务优化等核心内容,并展示系统实现界面。
|
2月前
|
存储 SQL 分布式计算
终于!大数据分析不用再“又要快又要省钱”二选一了!Dataphin新功能太香了!
Dataphin推出查询加速新功能,支持用StarRocks等引擎直连MaxCompute或Hadoop查原始数据,无需同步、秒级响应。数据只存一份,省成本、提效率,权限统一管理,打破“又要快又要省”的不可能三角,助力企业实现分析自由。
201 49
|
19天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的台风灾害分析及预测系统
针对台风灾害预警滞后、精度不足等问题,本研究基于Python与大数据技术,构建多源数据融合的台风预测系统。利用机器学习提升路径与强度预测准确率,结合Django框架实现动态可视化与实时预警,为防灾决策提供科学支持,显著提高应急响应效率,具有重要社会经济价值。
|
19天前
|
机器学习/深度学习 大数据 关系型数据库
基于python大数据的青少年网络使用情况分析及预测系统
本研究基于Python大数据技术,构建青少年网络行为分析系统,旨在破解现有防沉迷模式下用户画像模糊、预警滞后等难题。通过整合多平台亿级数据,运用机器学习实现精准行为预测与实时干预,推动数字治理向“数据驱动”转型,为家庭、学校及政府提供科学决策支持,助力青少年健康上网。
|
29天前
|
传感器 人工智能 监控
拔俗多模态跨尺度大数据AI分析平台:让复杂数据“开口说话”的智能引擎
在数字化时代,多模态跨尺度大数据AI分析平台应运而生,打破数据孤岛,融合图像、文本、视频等多源信息,贯通微观与宏观尺度,实现智能诊断、预测与决策,广泛应用于医疗、制造、金融等领域,推动AI从“看懂”到“会思考”的跃迁。
|
2月前
|
数据采集 数据可视化 关系型数据库
基于python大数据的电影数据可视化分析系统
电影分析与可视化平台顺应电影产业数字化趋势,整合大数据处理、人工智能与Web技术,实现电影数据的采集、分析与可视化展示。平台支持票房、评分、观众行为等多维度分析,助力行业洞察与决策,同时提供互动界面,增强观众对电影文化的理解。技术上依托Python、MySQL、Flask、HTML等构建,融合数据采集与AI分析,提升电影行业的数据应用能力。
|
2月前
|
数据可视化 大数据 数据挖掘
基于python大数据的招聘数据可视化分析系统
本系统基于Python开发,整合多渠道招聘数据,利用数据分析与可视化技术,助力企业高效决策。核心功能包括数据采集、智能分析、可视化展示及权限管理,提升招聘效率与人才管理水平,推动人力资源管理数字化转型。
|
2月前
|
机器学习/深度学习 搜索推荐 算法
基于python大数据的口红商品分析与推荐系统
本研究基于Python大数据技术,构建口红商品分析与推荐系统,旨在解决口红市场产品同质化与消费者选择困难问题。通过分析颜色、质地、价格等多维度数据及用户行为,实现个性化推荐,提升购物体验与品牌营销效率,推动美妆行业数字化转型,具有重要现实意义与市场价值。