应用场景 | 带你读《5G非正交多址技术》之十二

简介: 下行非正交传输可以应用在广播/多播场景。系统级的性能评估表 明,基础速率业务和增强速率业务可以叠加传输,通过调节两 种业务的发射功率分配,能够得到多种的增强速率和其覆盖范围的组 合,在不显著影响基础速率业务的前提下,为运营商提供了更多的部 署选择。

| 2.7 其他技术 |

第 3 章 下行广播/多播的非正交传输

下行非正交传输可以应用在广播/多播场景。系统级的性能评估表明,基础速率业务和增强速率业务可以叠加传输,通过调节两 种业务的发射功率分配,能够得到多种的增强速率和其覆盖范围的组 合,在不显著影响基础速率业务的前提下,为运营商提供了更多的部 署选择。

## | 3.1 应用场景 |

下行广播/多播在电视业务、应急通信、车联网和机器间通信等场景有广泛 应用。
(1)电视多媒体和娱乐:超高清晰的电视节目和虚拟现实、360 度视角、 Push-to-Talk/Video。
(2)车联网:自动驾驶、驾驶信息、安全驾驶、交通标识提示。
(3)机器间通信:软件更新、公共控制信息。
(4)应急通信:灾难(地震、海啸、台风等)的预警、Amber 预警、化学/ 放射性物质泄漏预警。
在很多应用中,广播/多播所服务的对象是覆盖范围内所有的签约用户。与 单播业务不同,广播/多播业务的物理层通常不支持信道状态信息的实时反馈, 发射端无法实施有效的预编码以及链路自适应和 HARQ。再加上发给每个多播组 的所有用户的数据都是相同的,其性能衡量指标通常是对应于某一数据速率所能 覆盖的范围,而不是每个小区的吞吐量。众所周知,蜂窝通信覆盖的薄弱区域一 般是小区的边缘,原因有两个:第一,小区边缘用户离基站较远,有用信号衰减比较严重;第二,小区边缘离邻区的基站相对较近,受到的干扰也更强。
广播/多播可以是单小区的,如 Single-cell PTM,此时不同小区广播/多播不 同的内容。但在很多情况下,为了弥补小区边缘的覆盖空洞,广播/多播采用单 频网络(Single Frequency Network,SFN)的部署,即多个相邻小区保持精确的 时钟同步,同时同频向覆盖区域的用户发送相同的数据,采用同样的调制编码方 式。在用户终端接收侧,从多个相邻小区发来的信号是相同的,只不过经历了不 同的路损、阴影衰落、小尺度衰落和时延。SFN 情况下,如果是码分复用(Code Division Multiple Access,CDMA),则需要较为复杂的先进接收机来消除由于 传播时延的差异造成的信号间的干扰。在第四代的蜂窝系统中,下行采用正交频 分复用(Orthogonal Frequency Division Multiplexing,OFDM),这十分有助于 SFN 方式的广播/多播网络,因为只要是信道的时延在循环前缀以内,理论上讲, 信号在叠加过程中不会产生干扰。用数学公式来描述,假设终端能够收到从 N 个基站发送的广播/多播信号,其中从基站 i 传来的信号经历的大尺度衰落表示为 Li,小尺度衰落 Hi[k],传播时延为 τ i,相干合并后的信道在频域中的响应为:
image.png
假设参与 SFN 的小区数足够多,干扰可以忽略不计,只有热噪声,类似“无 影灯”式的多点“照射”,此时广播/多播信号在接收端的第 k 个子载波上的信 噪比可以写成
image.png
式(3.2)中的 PT 是每个子载波上的发射功率,Nthermal 是在每个子载波上 的热噪声功率。由于理论上不存在邻区干扰,UE Geometry 只取决于基站之间 的距离(Inter-Site Distance,ISD)。随着基站间距的增大,UE Geometry 的 CDF 向左偏移,覆盖率变差。

| 3.2 LTE 物理多播信道(PMCH)简介 |

相关文章
|
1月前
|
存储 自动驾驶 大数据
5G技术:连接未来的桥梁
【6月更文挑战第17天】**5G技术,连接未来的桥梁,以高速率(20Gbps)、低时延(1ms)和海量连接赋能工业自动化、远程医疗、无人驾驶及智能教育。5G推动产业升级,改善生活质量,促进全球化,开启全新应用场景,预示着一个更高效、智能和互联的未来。**
|
1月前
|
5G 安全 SDN
【计算巢】网络切片技术:5G 网络的核心创新
【6月更文挑战第2天】5G时代的变革核心技术——网络切片,如同万能钥匙,可根据不同应用场景定制专属网络服务。通过虚拟化逻辑网络,满足各类行业个性化需求,如自动驾驶的低延迟连接或远程手术的安全传输。实现网络切片涉及NFV和SDN等技术,虽面临动态管理、安全隔离等挑战,但其潜力巨大,将推动各行各业的数字化转型,成为社会进步的关键驱动力。
|
2月前
|
自动驾驶 物联网 5G
【计算巢】无线网络技术:从Wi-Fi到5G的演进
【5月更文挑战第31天】本文探讨了无线网络技术从Wi-Fi到5G的演进,Wi-Fi利用无线电波实现无线局域网连接,示例代码展示如何用Python扫描Wi-Fi网络。5G技术则引入大规模MIMO、波束成形和毫米波,提高速度和容量,支持物联网等应用。通过Python检测5G信号强度的代码帮助理解其工作原理。无线网络技术的不断演进,为生活和工作带来更高效率和更多可能性。
|
2月前
|
安全 物联网 5G
探索5G技术及其对物联网的深远影响
【5月更文挑战第29天】5G技术,作为新一代移动通信技术,以其高速率、低延迟和大连接密度特性,显著影响物联网发展。它提升物联网设备连接速度与稳定性,推动设备智能化,增强安全性,并促进物联网产业繁荣。5G将重塑生活和生产方式,助力智能制造、智能交通等领域的快速发展。
|
1月前
|
监控 自动驾驶 安全
5G技术的飞速发展与应用前景
随着科技的不断进步,5G技术作为下一代移动通信标准,正以惊人的速度发展和应用。本文将探讨5G技术的前沿发展、其在各个领域的广泛应用以及对未来社会的影响。
23 0
|
2月前
|
物联网 5G SDN
|
2月前
|
人工智能 自动驾驶 物联网
5G技术:重塑我们生活的未来
【5月更文挑战第11天】5G技术,引领未来生活变革,提升通信速度、降低延迟,助力自动驾驶、远程医疗、虚拟现实等领域。5G将使日常生活更便捷,产业升级,社会进步,尤其在家居智能化、工业生产、农业精准化及医疗效率上带来显著改善。随着5G与AI、物联网融合,未来将深入各领域,塑造全新生活体验,驱动社会全面发展。
|
2月前
|
安全 自动驾驶 5G
5G vs 4G:通信技术的下一个革命
【4月更文挑战第21天】
64 0
5G vs 4G:通信技术的下一个革命
|
2月前
|
边缘计算 运维 5G
【专栏】IT 技术百科:5G 承载网是连接5G无线接入网与核心网的关键基础设施,负责高效、可靠的数据传输。
【4月更文挑战第28天】5G 承载网是连接5G无线接入网与核心网的关键基础设施,负责高效、可靠的数据传输。它保障通信质量,支持多样业务,并驱动技术创新。关键技术包括FlexE、网络切片、光传输和智能管控。面对高速率、低时延需求及网络复杂性挑战,5G承载网需持续创新并优化规划。未来,它将趋向智能化、融合发展及绿色节能。作为5G性能的核心,5G承载网将伴随5G技术的普及,持续为数字生活创造更多可能性。
|
2月前
|
5G 定位技术
带你读《5G大规模天线增强技术》精品文章合集
带你读《5G大规模天线增强技术》精品文章合集