遍历方案
从二叉树的递归定义可知,一棵非空的二叉树由根结点及左、右子树这三个基本部分组成。因此,在任一给定结点上,可以按某种次序执行三个操作:
⑴访问结点本身(N), ⑵遍历该结点的左子树(L), ⑶遍历该结点的右子树(R)。 以上三种操作有六种执行次序: NLR、LNR、LRN、NRL、RNL、RLN。 注意: 前三种次序与后三种次序对称,故只讨论先左后右的前三种次序。三种遍历的命名
根据访问结点操作发生位置命名: ① NLR: 前序遍历(PreorderTraversal亦称(先序遍历)) ——访问根结点的操作发生在遍历其左右子树之前。 ② LNR: 中序遍历(InorderTraversal) ——访问根结点的操作发生在遍历其左右子树之中(间),它也被叫做“对称序列”。 ③ LRN: 后序遍历(PostorderTraversal) ——访问根结点的操作发生在遍历其左右子树之后。 注意: 由于被访问的结点必是某子树的根,所以N(Node)、L(Left subtree)和R(Right subtree)又可解释为根、根的左子树和根的右子树。NLR、LNR和LRN分别又称为 先根遍历、中根遍历和后根遍历。遍历算法
1.中序遍历的 递归算法定义: 若二叉树非空,则依次执行如下操作: ⑴遍历左子树; ⑵访问根结点; ⑶遍历右子树。 2.先序遍历的递归算法定义: 若二叉树非空,则依次执行如下操作: ⑴ 访问根结点; ⑵ 遍历左子树; ⑶ 遍历右子树。 3.后序遍历得递归算法定义: 若二叉树非空,则依次执行如下操作: ⑴遍历左子树; ⑵遍历右子树; ⑶访问根结点。4.层次遍历
前序(Pre-order Traversal)、中序(In-order Traversal)、后序遍历(Post-orderTraversal)和深度优先搜索的顺序类似,层序遍历(Level-order Traversal)和广度优先搜索的顺序类似。
前序和中序遍历的结果合在一起可以唯一确定二叉树的形态,也就是说根据遍历结果可以构造出二叉树。