NR 整体架构 | 带你读《5G 空口设计与实践进阶 》之八

简介: 每一代移动通信系统,其标志性的技术特征主要在于全新的空口技术。在深入讨论 NR 空中接口的底层设计前,有必要先认识和掌握 NR 无线接口架构。这节主要介绍 NR 的整体架构。

无线接口架构

NR 标准化进程

| 2.1 NR 整体架构 |

NR 的整体架构由 NGC(核心网)和 NG-RAN(无线接入网)两部分组成,如图 2-1 所示。

image.png

2.1.1 NGC

NGC 与传统的移动通信网络核心网一脉相承,主要提供认证、鉴权、计费以及建立端到端连接等功能。这些功能的集合与无线接入非相关,但从网络功能完整性的角度来说是必需的。
NGC 采用了基于 SBA 的服务化架构设计,具有控制转发分离、全 IP 化、支持敏捷部署、支持网络切片功能以实现对业务和用户分类的精细化控制等特点。其主要网元包括 AMF、SMF、UPF、PCF、UDM、AUSF 和 NSSF 等,此处仅简要介绍 AMF、SMF 和 UPF 的功能。
AMF 主要负责控制面功能,具体包括注册区域管理、连接管理(空闲态UE 寻址,包括控制和执行寻呼重传)、移动性管理控制、信令合法监听以及上下文安全性管理等。
SMF 主要实现会话管理功能,具体包括会话的建立、变更和释放等,同时也负责 UE IP 地址的分配和管理、业务转发配置、UPF 功能的选择和控制(相当于网关选择)、控制策略执行和部分 QoS 功能、下行链路数据通知。
UPF 主要负责用户面功能,具体包括 RAT 间/内移动性锚点、分组路由和转发、与数据网互连的外部 PDU 会话点、用户平面策略规则实施、数据分组检查流量使用报告、用户平面 QoS 处理、上行链路数据分类、下行数据缓冲以及发起数据到达通知等。
NG-RAN 和 NGC 之间的功能划分如图 2-2 所示。

image.png

2.1.2 NG-RAN

NG-RAN 主要提供与无线接入相关的功能集合,具体包含 gNB 和 ng-eNB两类节点。其中,gNB 是采用 NR 用户面和控制面协议并提供 NR 接入服务的功能性逻辑节点,其网络实体一般指 NR 基站。相应地,ng-eNB 是指采用 LTE用户面和控制面协议并提供 LTE 接入服务的逻辑节点,网络实体一般为增强型LTE 基站。
gNB/ng-eNB 的主要功能包括无线资源管理、会话管理、报头压缩以及加密和完整性保护、连接建立和释放、调度和传输寻呼消息以及系统广播消息、移动性和测量配置、CP/UP 数据路由、QoS 流映射、NAS 消息分发、支持双连接等。

2.1.3 NG 接口

NG 接口是 NG-RAN 与 NGC 之间的逻辑接口。其中,NG-C 接口是 AMF和 gNB/ng-eNB 之间的接口,可提供可靠的信令传输服务,其协议栈如图 2-3所示。
NG-U 是 UPF 和 gNB/ng-eNB 之间的接口,可提供非保证的数据传输,其协议栈如图 2-4 所示。

image.png

NG 接口可以实现 NGC 和 NG-RAN 节点的多对多连接,也就是说,一个AMF/UPF 可以连接多个 gNB/ng-eNB,同理,一个 gNB/ng-eNB 也可以连接多个 AMF/UPF。当 UE 在网络侧分配的注册区域内移动时,即使发生小区重选,也仍可以驻留在相同的 AMF/UPF 上,而不需要发起新的注册更新流程。而当AMF/UPF 与 NG-RAN 之间进行新资源分配或者两者间的连接路径较长时,可以改变与 UE 连接的 AMF/UPF。这种 AMF/UPF 与 NG-RAN 之间的灵活连接有助于 NR 网络的共享。

2.1.4 Xn 接口

gNB 之间、ng-eNB 之间,以及 gNB 和 ng-eNB 之间通过 Xn 接口进行连接。其中,用户面接口称为 Xn-U 接口,主要提供数据转发功能和流量控制功能,其协议栈如图 2-5 所示。
Xn 控制面接口称为 Xn-C 接口,主要提供 Xn 接口管理、UE 移动性管理和双连接的实现等功能,其协议栈如图 2-6 所示。

image.png

| 2.2 无线协议栈 |

NR 无线协议栈可以分为两个平面,即用户面和控制面。其中,用户面(UP,User Plane)协议栈即是用户数据传输所采用的协议簇,控制面(CP,ControlPlane)协议栈即是系统的控制信令传输所采用的协议簇。二者稍有不同。

2.2.1 控制面协议栈

NR 控制面协议栈与 LTE 基本一致,自上而下依次为以下几层。

  • NAS:非接入层(Non-Access Stratum)。
  • RRC 层:无线资源控制(Radio Resource Control)层。
  • PDCP 层:分组数据汇聚协议(Packet Data Convergence Protocol)层。
  • RLC 层:无线链路控制(Radio Link Control)层。
  • MAC 层:媒体接入控制(Medium Access Control)层。
  • PHY 层:物理层(Physical Layer)。

对于 UE 侧,所有的控制面协议栈都位于 UE 内。而对于网络侧,除 NAS层位于核心网的 AMF,其余均位于 gNB 上,具体如图 2-7 所示。

image.png

2.2.2 用户面协议栈

NR 用户面协议栈相对于 LTE 增加了 SDAP 子层,自上而下依次为以下几层。

  • SDAP 层:服务数据适应协议(Service Data Adaptation Protocol)层。
  • PDCP 层:分组数据汇聚协议层。
  • RLC 层:无线链路控制层。
  • MAC 层:媒体接入控制层。
  • PHY 层:物理层。

对于 UE 侧,所有的用户面协议栈都位于 UE 内。对于网络侧,用户面协议栈也同样都存在于 gNB 内,如图 2-8所示。

image.png

| 2.3 RRC 层 |

相关文章
|
10天前
|
运维 Cloud Native 持续交付
云原生架构的演进与实践####
【10月更文挑战第16天】 云原生,这一概念自提出以来,便以其独特的魅力和无限的可能性,引领着现代软件开发与部署的新浪潮。本文旨在探讨云原生架构的核心理念、关键技术及其在实际项目中的应用实践,揭示其如何帮助企业实现更高效、更灵活、更可靠的IT系统构建与管理。通过深入剖析容器化、微服务、持续集成/持续部署(CI/CD)等核心技术,结合具体案例,本文将展现云原生架构如何赋能企业数字化转型,推动业务创新与发展。 ####
109 47
|
10天前
|
Java 持续交付 微服务
后端开发中的微服务架构实践与挑战####
本文深入探讨了微服务架构在现代后端开发中的应用,通过具体案例分析,揭示了其如何助力企业应对业务复杂性、提升系统可维护性和可扩展性。文章首先概述了微服务的核心概念及其优势,随后详细阐述了实施微服务过程中的关键技术选型、服务拆分策略、容错机制以及持续集成/持续部署(CI/CD)的最佳实践。最后,通过一个真实世界的应用实例,展示了微服务架构在实际项目中的成功应用及其带来的显著成效。 ####
|
5天前
|
Kubernetes 负载均衡 Docker
构建高效后端服务:微服务架构的探索与实践
【10月更文挑战第20天】 在数字化时代,后端服务的构建对于任何在线业务的成功至关重要。本文将深入探讨微服务架构的概念、优势以及如何在实际项目中有效实施。我们将从微服务的基本理念出发,逐步解析其在提高系统可维护性、扩展性和敏捷性方面的作用。通过实际案例分析,揭示微服务架构在不同场景下的应用策略和最佳实践。无论你是后端开发新手还是经验丰富的工程师,本文都将为你提供宝贵的见解和实用的指导。
|
1天前
|
边缘计算 自动驾驶 5G
|
3天前
|
存储 安全 Java
系统安全架构的深度解析与实践:Java代码实现
【11月更文挑战第1天】系统安全架构是保护信息系统免受各种威胁和攻击的关键。作为系统架构师,设计一套完善的系统安全架构不仅需要对各种安全威胁有深入理解,还需要熟练掌握各种安全技术和工具。
27 10
|
4天前
|
监控 Cloud Native Java
云原生架构下微服务治理策略与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境下微服务架构的治理策略,通过分析当前技术趋势与挑战,提出了一系列高效、可扩展的微服务治理最佳实践方案。不同于传统摘要概述内容要点,本部分直接聚焦于治理核心——如何在动态多变的分布式系统中实现服务的自动发现、配置管理、流量控制及故障恢复,旨在为开发者提供一套系统性的方法论,助力企业在云端构建更加健壮、灵活的应用程序。 ####
44 10
|
3天前
|
缓存 运维 监控
后端开发中的微服务架构实践与挑战#### 一、
【10月更文挑战第22天】 本文探讨了微服务架构在后端开发中的应用实践,深入剖析了其核心优势、常见挑战及应对策略。传统后端架构难以满足快速迭代与高可用性需求,而微服务通过服务拆分与独立部署,显著提升了系统的灵活性和可维护性。文章指出,实施微服务需关注服务划分的合理性、通信机制的选择及数据一致性等问题。以电商系统为例,详细阐述了微服务改造过程,包括用户、订单、商品等服务的拆分与交互。最终强调,微服务虽优势明显,但落地需谨慎规划,持续优化。 #### 二、
|
4天前
|
运维 Cloud Native 持续交付
云原生架构下的微服务设计原则与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境中微服务设计的几大核心原则,包括服务的细粒度划分、无状态性、独立部署、自动化管理及容错机制。通过分析这些原则背后的技术逻辑与业务价值,结合具体案例,展示了如何在现代云平台上实现高效、灵活且可扩展的微服务架构,以应对快速变化的市场需求和技术挑战。 ####
23 7
|
6天前
|
消息中间件 Java API
微服务架构设计与实现:从理论到实践
微服务架构设计与实现:从理论到实践
26 7
|
3天前
|
监控 Cloud Native 测试技术
云原生架构下的性能优化与实践####
【10月更文挑战第21天】 本文深入探讨了在云原生环境下,如何通过一系列技术手段和最佳实践来提升应用性能。文章首先概述了云原生架构的基本原则与优势,随后详细分析了影响性能的关键因素,包括容器编排、微服务设计、持续集成/持续部署(CI/CD)流程以及监控与日志管理。针对这些因素,文中不仅介绍了具体的优化策略,如资源请求与限制的合理配置、服务间通信的高效实现、自动化测试与部署的优化,还结合案例分析,展示了如何在实际项目中有效实施这些策略以显著提升系统响应速度和处理能力。此外,文章还强调了性能测试的重要性,并提供了几种常用的性能测试工具和方法。最后,总结了云原生性能优化的未来趋势,为开发者和架构师
9 2

热门文章

最新文章