开发者社区> 被纵养的懒猫> 正文
阿里云
为了无法计算的价值
打开APP
阿里云APP内打开

前传感知的协作传输和接收之下行链路 | 带你读《5G系统关键技术详解》之十三

简介: 在当前的 3G/4G 蜂窝网络中,每个被调度的用户由一个基站服务并且接收到来自所 有相邻基站的干扰。C-RAN 架构的优点来自多个 RRH 协同服务用户的能力,从而小化干扰的影响。
+关注继续查看

第 3 章 云无线接入网络的前向回传感知设计

3.2 前传感知的协作传输和接收

3.2.1 上行链路

3.2.2 下行链路

在下行链路 C-RAN 中,每个用户的观测信号是从所有 RRH 发送的信号的叠加。具
image.png
在当前的 3G/4G 蜂窝网络中,每个被调度的用户由一个基站服务并且接收到来自所 有相邻基站的干扰。C-RAN 架构的优点来自多个 RRH 协同服务用户的能力,从而小化干扰的影响。由于针对 C-RAN 中不同用户的消息都源于 CP,所以 CP 可以经由前传链 路将用户消息的有用信息中继到 RRH,从而允许 RRH 进行网络范围的波束成形,以实现协作传输。
如果前传链路具有无限容量,则 CP 可以将 C-RAN 中所有用户的数据完全传达给每个 RRH,从而实现充分的协作。然而,使用有限容量的前传链路,CP 只能向每个 RRH 发送有限数量的信息。因此,CP 的关键任务是以简洁的形式将关于用户消息的信息传 达给 RRH,以便尽可能地减轻干扰。
一种可能性是使用基于压缩的策略[5],这可以被认为是在上行链路中使用的压缩转发 策略的双重操作。这个想法是在 CP 处理由 RRH 发送的协同波束成形的信号。然后由天 线发送的模拟信号被压缩并经由前传链路数字传输到对应的 RRH 以用于协作传输。作为 更简单的替代方案,CP 可以选择通过前传链路与 RRH 直接共享用户消息,即数据共享 策略[6, 7]。通过掌握的用户信息,RRH 可以自己波束成形其发送信号,然后将它们发送给 用户。在下文中,我们使用基于压缩和数据共享策略量化下行链路 C-RAN 的可实现速率和前传要求。
1.压缩转发策略
image.png
image.png
如在上行链路的情况下,我们假设 CP 应用标量量化来独立地压缩波束成形信号的每 个分量(尽管我们在此注意到跨越 RRH 的多变量压缩也是可能的[5],尽管具有较高的复 杂度)。压缩过程被建模为具有独立的加性高斯量化噪声的高斯测试信道。结果,RRH n 的第 m 个天线的发射信号由式(3.16)给出。
image.png
image.png
image.png
2.数据共享机制
对于下行链路C-RAN的压缩策略的替代方案是,CP可以直接与RRH共享用户消息,而不是发送波束成形信号的压缩版本,然后 RRH 本地执行波束成形,并且将波束成形的信号协作地发送给用户。
image.png
观察到上面没有量化噪声项。因此,如果式(3.22)中给出的 ZF 波束成形设计适用于所有用户,则可以类似于式(3.23)所做的(但没有量化噪声)获得数据共享策略下的用户 k 的可实现速率,即
image.png
image.png
3.性能评估
图 3.4 显示了以用户为中心聚类下的下行链路 C-RAN 中在压缩和数据共享策略之间 每个信元和比率的比较。网络设置类似于表 3.1 给出的上行链路,每个小区有 3 个 RRH, 除了每个 RRH 的天线数设置为 M=4,每个 RRH 的平均发射功率设置为 43 dBm。压缩策 略中以用户为中心的群集的大小是固定的,而数据共享策略的群集大小为 1~10。从图中 观察到与单小区基线相比,C-RAN 在上行链路情况下带来了相当大的性能提升。在 6 倍 接入速率的前传容量下,协作传输几乎能使得和速率翻倍。
还要注意的是,在较低前传容量的情况下,数据共享优于压缩,而在较高前传容量 的情况下,压缩优于数据共享。原因是在数据共享策略中,每个用户的消息被重复地通 过不同的前传链路发送到其服务的 RRH,当群集尺寸很大时,前传的使用不是有效的。
我们认为这个部分假设了一个在 CP 和 RRH 之间有直接连接的单跳 C-RAN。如果前 传网络由边缘路由器和具有多跳的网络处理器组成,路由策略也可以发挥重要作用。特别地,由于数据共享策略相当于将用户消息多播到多个 RRH,因此,可以应用网络编码 技术来提高前传网络的效率[8]。
image.png

3.3 前传感知的数据链路层和物理层之上行链路

版权声明:本文内容由阿里云实名注册用户自发贡献,版权归原作者所有,阿里云开发者社区不拥有其著作权,亦不承担相应法律责任。具体规则请查看《阿里云开发者社区用户服务协议》和《阿里云开发者社区知识产权保护指引》。如果您发现本社区中有涉嫌抄袭的内容,填写侵权投诉表单进行举报,一经查实,本社区将立刻删除涉嫌侵权内容。

相关文章
下行非正交多址的主要方案 | 带你读《5G非正交多址技术》之三
下行非正交多址的应用主要是eMBB场景,追求的是系统频谱效率的提升。
2025 0
其他技术 | 带你读《5G非正交多址技术》之十一
干扰信号 s 是基站在相同的时频资源发给另一个用户的信号。这个干扰信 号是发射侧完全知道的,但接收侧并不知道。
1802 0
广播/多播业务的非正交传输 | 带你读《5G非正交多址技术》之十四
非正交传输的原理可以用在下行的广播/多播业务上,也就是不同速率的业 务在相同的时间、频率和空间域中传输。
3706 0
随机接入 |带你读《5G 无线系统设计与国际标准》之十一
随机接入过程用于获得上行同步,完成随机接入过程之后,终端就可以与基站进行上行通信。与 LTE 类似,NR 支持基于竞争的随机接入及基于非竞争的随机接入。
2909 0
5G 标准制定概述 | 带你读《5G 无线系统设计与国际标准》之一
5G 将渗透到未来社会的各个领域,以用户为中心构建全方位的信息生态系统。5G 将使信息突破时空限制,提供极佳的交互体验,为用户带来身临其境的信息盛宴。5G 将拉近万物的距离,通过无缝融合的方式,便捷地实现人与万物的智能互联。
1581 0
无线接口 | 带你读《5G 无线系统设计与国际标准》之五
本节对物理层、数据链路层和网络层基本功能相关内容进行一些讨论。
2757 0
重新思考C-RAN的协议栈 | 带你读《5G系统关键技术详解》之十
由于 COTS 平台和传统的 DSP 架构平台之间的区别,更 为重要的是以小区为中心和以用户为中心的设计原则的差异,需要重新考虑 C-RAN 中的 整个软件系统架构,以尽可能地利用云计算特征和 COTS 平台的能力。
1418 0
重新思考5G的基础知识 | 带你读《5G系统关键技术详解》之六
全球移动数据流量从 2015 年到 2020 年将继续快速增长。同时,第 5G 需要加强电信基础设施,提供新的信息服务,以支持农业、医药、金融、交通运输、制 造业、教育等各个行业领域的垂直应用。因此,5G 需要创新的解决方案,以满足移动互联 网和物联网(IoT,Internet of Things)对用户体验数据速率提升、延迟降低、连接密度和地 区容量密度增强、移动性增强、频谱效率和能效等方面的新需求。
2606 0
5G UDN的部署场景 | 带你读《5G UDN(超密集网络)技术详解》之十八
5G UDN 一系列相关技术的研究,都是以具体的部署场景为驱动的,要求 能对各种场景先建模仿真,尽可能反映客观物理环境。计算机模拟仿真处理能 力的巨大提升,使得这一研究方法成为可能。
2267 0
关键技术 三:LTE-A 协作多点传输 | 带你读《5G UDN(超密集网络)技术详解》之十二
本章节进一步详细解释 LTE 小小区相关的关键技术之三:LTE-A 协作多点传输,并且关联着说明它们对后续 5G NR 小小区的基线性影响和适用情况。
1889 0
文章
问答
来源圈子
更多
+ 订阅
文章排行榜
最热
最新
相关电子书
更多
深入解析数据存储技术原理及发展演进—固态存储技术
立即下载
千万Feeds流系统的存储技术揭秘
立即下载
金融异构报文处理和分发
立即下载