我知道你已经用上了最先进的深度学习模型,不过,还在人工标注数据吗?这有点过时了!快来了解下Snorkel —— 最新的基于弱监督学习的大规模训练数据标注神器!
要快速掌握机器学习应用的开发,推荐汇智网的机器学习系列教程。
现在的机器学习尤其是深度学习模型很强大,但是训练这些模型需要大量的标注数据集!传统的人工标注方式成本非常高,而且很耗时间,在有些情况下根本就是不现实的,例如可能涉及到隐私的问题。当需要领域专家才能够进行数据的标注时,这一问题变得更加糟糕 。而且,随着时间的推移,标注任务有可能也会变化,而这些手工标注的训练数据都是静态的,可能无法应用于变化的任务,造成既往投入的浪费。
斯坦福大学的snorkel系统,就是为了解决数据标注这一机器学习的瓶颈问题而开发的解决方案,它的基本思想就是通过编程来标注海量的数据点。
我们可以使用多种方法来编写标注数据的程序,例如使用假设、类比、规则、知识库等等。这样得到的训练数据集被称为弱监督(Weak Supervision):标注并不精确,并且可能存在多个彼此冲突或重叠的标注信号。
可以视为弱监督源的示例包括:
- 领域启发式搜索,例如:常见模式、经验法则等
- 已有的正确标注的数据,虽然不完全适用于当前的任务,但有一定的作用。这在
传统上被称为远程监督。 - 不可靠的非专家标注人,例如:众包标注
Snorkel是一个围绕数据编程范式(Data Programming paradigm)而构建的系统,用于快速创建、建模并管理用于机器学习的训练数据集。
数据编程范式是一个简单但强大的方法,我们请领域专家给出各种各样的监督信号作为标注函数,可以使用标准的像Python这样的脚本函数来编写这些标注函数。标准函数中编码了领域相关的推理规则,可以使用入正则表达式、经验规则等常见的模式进行标注。这样生成的标注是包含噪声的,并且可能彼此冲突。
在Snorkel中,这些标注推断被成为标注函数(Labeling Function),下面是一些常见类型的标注函数:
- 硬编码的推导:通常使用正则表达式
- 语义结构:例如,使用spacy得到的依存关系结构
- 远程监督:例如使用外部的知识库
- 有噪声人工标注:例如众包标注
- 外部模型:其他可以给出有用标注信号的模型
当编写好标注函数后,Snorkel将利用这些不同的标注函数之间的冲突训练一个标注模型(Label Model)来估算不同标注函数的标注准确度。通过观察标注函数之间的彼此一致性,标注模型能够学习到每个监督源的准确度。
例如,如果一个标注函数的标注结果总是得到其他标注函数的认可,那么这个标注函数将有一个高准确率,而如果一个标注函数总是与其他标注函数的结果不一致,那么这个标注函数将得到一个较低的准确率。通过整合所有的标注函数的投票结果(以其估算准确度作为权重),我们就可以为每个数据样本分配一个包含噪声的标注(0~1之间),而不是一个硬标注(要么0,要么1)。
接下来,当标注一个新的数据点时,每一个标注函数都会对分类进行投票:正、负或弃权。基于这些投票以及标注函数的估算精度,标注模型能够程序化到为上百万的数据点给出概率性标注。最终的目标是训练出一个可以超越标注函数的泛化能力的分类器。
这一方法的三大优点是:
- 可以大规模标注,每个标注函数都可以用于成百上千个数据样本的标注。
- 可以利用海量的未标注数据,来构建大量虽然不完美但是足够好的大型训练数据集
- 这些标注可以用于训练一个具有大特征集的强大的判别分类器。即使我们只使用
100个标注函数,每个数据样本依然可以有上千个特征。
因此,通过这种方法得到海量的低质量监督,然后使用统计技术处理有噪标注,我们可以训练出高质量的模型。