70%的Java程序员不知道为啥 ConcurrentHashMap 读操作不需要加锁?

简介: 70%的Java程序员不知道为啥 ConcurrentHashMap 读操作不需要加锁?

作者:上帝爱吃苹果

目录
1.ConcurrentHashMap的简介
2.get操作源码
3.volatile登场
4.是加在数组上的volatile吗?
5.用volatile修饰的Node
6.总结

我们知道,ConcurrentHashmap(1.8)这个并发集合框架是线程安全的,当你看到源码的get操作时,会发现get操作全程是没有加任何锁的,这也是这篇博文讨论的问题——为什么它不需要加锁呢?

ConcurrentHashMap的简介
我想有基础的同学知道在jdk1.7中是采用Segment + HashEntry + ReentrantLock的方式进行实现的,而1.8中放弃了Segment臃肿的设计,取而代之的是采用Node + CAS + Synchronized来保证并发安全进行实现。
JDK1.8的实现降低锁的粒度,JDK1.7版本锁的粒度是基于Segment的,包含多个HashEntry,而JDK1.8锁的粒度就是HashEntry(首节点)
JDK1.8版本的数据结构变得更加简单,使得操作也更加清晰流畅,因为已经使用synchronized来进行同步,所以不需要分段锁的概念,也就不需要Segment这种数据结构了,由于粒度的降低,实现的复杂度也增加了
JDK1.8使用红黑树来优化链表,基于长度很长的链表的遍历是一个很漫长的过程,而红黑树的遍历效率是很快的,代替一定阈值的链表,这样形成一个最佳拍档
image

get操作源码
首先计算hash值,定位到该table索引位置,如果是首节点符合就返回
如果遇到扩容的时候,会调用标志正在扩容节点ForwardingNode的find方法,查找该节点,匹配就返回
以上都不符合的话,就往下遍历节点,匹配就返回,否则最后就返回null

//会发现源码中没有一处加了锁
public V get(Object key) {
 Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
 int h = spread(key.hashCode()); //计算hash
 if ((tab = table) != null && (n = tab.length) > 0 &&
 (e = tabAt(tab, (n - 1) & h)) != null) {//读取首节点的Node元素
 if ((eh = e.hash) == h) { //如果该节点就是首节点就返回
 if ((ek = e.key) == key || (ek != null && key.equals(ek)))
 return e.val;
 }
 //hash值为负值表示正在扩容,这个时候查的是ForwardingNode的find方法来定位到nextTable来
 //eh=-1,说明该节点是一个ForwardingNode,正在迁移,此时调用ForwardingNode的find方法去nextTable里找。
 //eh=-2,说明该节点是一个TreeBin,此时调用TreeBin的find方法遍历红黑树,由于红黑树有可能正在旋转变色,所以find里会有读写锁。
 //eh>=0,说明该节点下挂的是一个链表,直接遍历该链表即可。
 else if (eh < 0)
 return (p = e.find(h, key)) != null ? p.val : null;
 while ((e = e.next) != null) {//既不是首节点也不是ForwardingNode,那就往下遍历
 if (e.hash == h &&
 ((ek = e.key) == key || (ek != null && key.equals(ek))))
 return e.val;
 }
 }
 return null;
}

get没有加锁的话,ConcurrentHashMap是如何保证读到的数据不是脏数据的呢?

volatile登场
对于可见性,Java提供了volatile关键字来保证可见性、有序性。但不保证原子性。
普通的共享变量不能保证可见性,因为普通共享变量被修改之后,什么时候被写入主存是不确定的,当其他线程去读取时,此时内存中可能还是原来的旧值,因此无法保证可见性。
volatile关键字对于基本类型的修改可以在随后对多个线程的读保持一致,但是对于引用类型如数组,实体bean,仅仅保证引用的可见性,但并不保证引用内容的可见性。。
禁止进行指令重排序。
背景:为了提高处理速度,处理器不直接和内存进行通信,而是先将系统内存的数据读到内部缓存(L1,L2或其他)后再进行操作,但操作完不知道何时会写到内存。
如果对声明了volatile的变量进行写操作,JVM就会向处理器发送一条指令,将这个变量所在缓存行的数据写回到系统内存。但是,就算写回到内存,如果其他处理器缓存的值还是旧的,再执行计算操作就会有问题。
在多处理器下,为了保证各个处理器的缓存是一致的,就会实现缓存一致性协议,当某个CPU在写数据时,如果发现操作的变量是共享变量,则会通知其他CPU告知该变量的缓存行是无效的,因此其他CPU在读取该变量时,发现其无效会重新从主存中加载数据。
image

总结下来:
第一:使用volatile关键字会强制将修改的值立即写入主存;
第二:使用volatile关键字的话,当线程2进行修改时,会导致线程1的工作内存中缓存变量的缓存行无效(反映到硬件层的话,就是CPU的L1或者L2缓存中对应的缓存行无效);
第三:由于线程1的工作内存中缓存变量的缓存行无效,所以线程1再次读取变量的值时会去主存读取。

是加在数组上的volatile吗?

/**
     * The array of bins. Lazily initialized upon first insertion.
     * Size is always a power of two. Accessed directly by iterators.
     */
 transient volatile Node<K,V>[] table;

我们知道volatile可以修饰数组的,只是意思和它表面上看起来的样子不同。举个栗子,volatile int array[10]是指array的地址是volatile的而不是数组元素的值是volatile的.

用volatile修饰的Node
get操作可以无锁是由于Node的元素val和指针next是用volatile修饰的,在多线程环境下线程A修改结点的val或者新增节点的时候是对线程B可见的。

static class Node<K,V> implements Map.Entry<K,V> {
 final int hash;
 final K key;
 //可以看到这些都用了volatile修饰
 volatile V val;
 volatile Node<K,V> next;

 Node(int hash, K key, V val, Node<K,V> next) {
 this.hash = hash;
 this.key = key;
 this.val = val;
 this.next = next;
 }

 public final K getKey() { return key; }
 public final V getValue() { return val; }
 public final int hashCode() { return key.hashCode() ^ val.hashCode(); }
 public final String toString(){ return key + "=" + val; }
 public final V setValue(V value) {
 throw new UnsupportedOperationException();
 }

 public final boolean equals(Object o) {
 Object k, v, u; Map.Entry<?,?> e;
 return ((o instanceof Map.Entry) &&
 (k = (e = (Map.Entry<?,?>)o).getKey()) != null &&
 (v = e.getValue()) != null &&
 (k == key || k.equals(key)) &&
 (v == (u = val) || v.equals(u)));
 }

 /**
     * Virtualized support for map.get(); overridden in subclasses.
     */
 Node<K,V> find(int h, Object k) {
 Node<K,V> e = this;
 if (k != null) {
 do {
                K ek;
 if (e.hash == h &&
 ((ek = e.key) == k || (ek != null && k.equals(ek))))
 return e;
 } while ((e = e.next) != null);
 }
 return null;
 }
}

既然volatile修饰数组对get操作没有效果那加在数组上的volatile的目的是什么呢?
其实就是为了使得Node数组在扩容的时候对其他线程具有可见性而加的volatile

总结
在1.8中ConcurrentHashMap的get操作全程不需要加锁,这也是它比其他并发集合比如hashtable、用Collections.synchronizedMap()包装的hashmap;安全效率高的原因之一。
get操作全程不需要加锁是因为Node的成员val是用volatile修饰的和数组用volatile修饰没有关系。
数组用volatile修饰主要是保证在数组扩容的时候保证可见性。

欢迎大家一起交流,喜欢文章记得点个赞哟,感谢支持!

相关文章
|
6天前
|
Java
Java中ReentrantLock释放锁代码解析
Java中ReentrantLock释放锁代码解析
23 8
|
1月前
|
Java
Java并发编程中的锁机制
【2月更文挑战第22天】 在Java并发编程中,锁机制是一种重要的同步手段,用于保证多个线程在访问共享资源时的安全性。本文将介绍Java锁机制的基本概念、种类以及使用方法,帮助读者深入理解并发编程中的锁机制。
|
6天前
|
Java 调度
Java中常见锁的分类及概念分析
Java中常见锁的分类及概念分析
13 0
|
6天前
|
Java
Java中ReentrantLock中tryLock()方法加锁分析
Java中ReentrantLock中tryLock()方法加锁分析
8 0
|
2天前
|
Java 程序员 编译器
Java中的线程同步与锁优化策略
【4月更文挑战第14天】在多线程编程中,线程同步是确保数据一致性和程序正确性的关键。Java提供了多种机制来实现线程同步,其中最常用的是synchronized关键字和Lock接口。本文将深入探讨Java中的线程同步问题,并分析如何通过锁优化策略提高程序性能。我们将首先介绍线程同步的基本概念,然后详细讨论synchronized和Lock的使用及优缺点,最后探讨一些锁优化技巧,如锁粗化、锁消除和读写锁等。
|
3天前
|
Java 编译器
Java并发编程中的锁优化策略
【4月更文挑战第13天】 在Java并发编程中,锁是一种常见的同步机制,用于保证多个线程之间的数据一致性。然而,不当的锁使用可能导致性能下降,甚至死锁。本文将探讨Java并发编程中的锁优化策略,包括锁粗化、锁消除、锁降级等方法,以提高程序的执行效率。
11 4
|
10天前
|
安全 Java 调度
深入理解Java中的线程安全与锁机制
【4月更文挑战第6天】 在并发编程领域,Java语言提供了强大的线程支持和同步机制来确保多线程环境下的数据一致性和线程安全性。本文将深入探讨Java中线程安全的概念、常见的线程安全问题以及如何使用不同的锁机制来解决这些问题。我们将从基本的synchronized关键字开始,到显式锁(如ReentrantLock),再到读写锁(ReadWriteLock)的讨论,并结合实例代码来展示它们在实际开发中的应用。通过本文,读者不仅能够理解线程安全的重要性,还能掌握如何有效地在Java中应用各种锁机制以保障程序的稳定运行。
|
11天前
|
Java 编译器
Java并发编程中的锁优化策略
【4月更文挑战第5天】随着多核处理器的普及,并发编程在提高程序性能方面发挥着越来越重要的作用。在Java中,锁是实现并发控制的关键机制。本文将探讨Java并发编程中的锁优化策略,包括锁粗化、锁消除、锁排序等技术,以提高程序的执行效率和降低资源争用。
|
14天前
|
XML Java 程序员
作为Java程序员还不知道Spring中Bean创建过程和作用?
作为Java程序员还不知道Spring中Bean创建过程和作用?
11 0
|
22天前
|
安全 算法 Java
Java并发编程中的锁优化策略
在多线程环境下,确保数据的一致性和程序的正确性是至关重要的。Java提供了多种锁机制来支持并发编程,包括内置锁(synchronized)和显式锁(如ReentrantLock)。然而,不当使用锁可能会导致性能瓶颈甚至死锁。本文将探讨Java并发编程中锁的优化策略,旨在提高程序的性能和响应速度,同时保证线程安全。