spaCy实战论文分类【NLP】

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP自然语言处理_基础版,每接口每天50万次
NLP 自学习平台,3个模型定制额度 1个月
简介: spaCy是一个流行、易用的Python自然语言处理包。spaCy具有相当高的处理精度,而且处理速度极快。不过,由于spaCy还是一个相对比较新的NLP开发包,因此它还没有像NLTK那样被广泛采用,而且目前也没有太多的教程。

spaCy是一个流行、易用的Python自然语言处理包。spaCy具有相当高的处理精度,而且处理速度极快。不过,由于spaCy还是一个相对比较新的NLP开发包,因此它还没有像NLTK那样被广泛采用,而且目前也没有太多的教程。在本文中,我们将展示如何使用spaCy来实现文本分类,并在结尾提供完整的实现代码。

1、数据准备

对于年轻的研究者而言,寻找并筛选出合适的学术会议来投稿,是一件相当耗时耗力的事情。首先下载会议处理数据集,我们接下来将按照会议来分类论文。

2、浏览数据

先快速看一下数据:

import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import base64
import string
import re
from collections import Counter
from nltk.corpus import stopwords
stopwords = stopwords.words('english')df = pd.read_csv('research_paper.csv')
df.head()

结果如下:

在这里插入图片描述

可以用下面的代码确认数据集中没有丢失的值:

df.isnull().sum()

结果如下:

Title 0
Conference 0
dtype: int64

现在我们把数据拆分为训练集和测试集:

from sklearn.model_selection import train_test_split
train, test = train_test_split(df, test_size=0.33, random_state=42)print('Research title sample:', train['Title'].iloc[0])
print('Conference of this paper:', train['Conference'].iloc[0])
print('Training Data Shape:', train.shape)
print('Testing Data Shape:', test.shape)

运行结果如下:

Research title sample: Cooperating with Smartness: Using Heterogeneous Smart Antennas in Ad-Hoc Networks.
Conference of this paper: INFOCOM
Training Data Shape: (1679, 2)
Testing Data Shape: (828, 2)

数据集包含了2507个论文标题,已经按会议分为5类。下面的图表概述了论文在不同会议中的分布情况:

在这里插入图片描述

下面的代码是使用spaCy进行文本预处理的一种方法,之后我们将尝试找出在前两个类型会议(INFOCOM &ISCAS)的论文中用的最多的单词:

import spacynlp = spacy.load('en_core_web_sm')
punctuations = string.punctuationdef cleanup_text(docs, logging=False):
    texts = []
    counter = 1
    for doc in docs:
        if counter % 1000 == 0 and logging:
            print("Processed %d out of %d documents." % (counter, len(docs)))
        counter += 1
        doc = nlp(doc, disable=['parser', 'ner'])
        tokens = [tok.lemma_.lower().strip() for tok in doc if tok.lemma_ != '-PRON-']
        tokens = [tok for tok in tokens if tok not in stopwords and tok not in punctuations]
        tokens = ' '.join(tokens)
        texts.append(tokens)
    return pd.Series(texts)INFO_text = [text for text in train[train['Conference'] == 'INFOCOM']['Title']]IS_text = [text for text in train[train['Conference'] == 'ISCAS']['Title']]INFO_clean = cleanup_text(INFO_text)
    
INFO_clean = ' '.join(INFO_clean).split()IS_clean = cleanup_text(IS_text)
IS_clean = ' '.join(IS_clean).split()INFO_counts = Counter(INFO_clean)
IS_counts = Counter(IS_clean)INFO_common_words = [word[0] for word in INFO_counts.most_common(20)]
INFO_common_counts = [word[1] for word in INFO_counts.most_common(20)]fig = plt.figure(figsize=(18,6))
sns.barplot(x=INFO_common_words, y=INFO_common_counts)
plt.title('Most Common Words used in the research papers for conference INFOCOM')
plt.show()

INFORCOM的运行结果如下:

在这里插入图片描述

接下来计算ISCAS:

IS_common_words = [word[0] for word in IS_counts.most_common(20)]
IS_common_counts = [word[1] for word in IS_counts.most_common(20)]fig = plt.figure(figsize=(18,6))
sns.barplot(x=IS_common_words, y=IS_common_counts)
plt.title('Most Common Words used in the research papers for conference ISCAS')
plt.show()

运行结果如下:

在这里插入图片描述

在INFOCOM中的顶级词是“networks”和“network”,显然这是因为INFOCOM是网络领域的会议。
ISCAS的顶级词是“base”和“design”,这揭示出ISCAS是关于数据库、系统设计等课题的会议。

3、用spaCy进行机器学习

首先我们载入spacy模型并创建语言处理对象:

from sklearn.feature_extraction.text import CountVectorizer
from sklearn.base import TransformerMixin
from sklearn.pipeline import Pipeline
from sklearn.svm import LinearSVC
from sklearn.feature_extraction.stop_words import ENGLISH_STOP_WORDS
from sklearn.metrics import accuracy_score
from nltk.corpus import stopwords
import string
import re
import spacy
spacy.load('en')
from spacy.lang.en import English
parser = English()

下面是另一种用spaCy清理文本的方法:

STOPLIST = set(stopwords.words('english') + list(ENGLISH_STOP_WORDS))
SYMBOLS = " ".join(string.punctuation).split(" ") + ["-", "...", "”", "”"]class CleanTextTransformer(TransformerMixin):   def transform(self, X, **transform_params):
        return [cleanText(text) for text in X]   def fit(self, X, y=None, **fit_params):
        return selfdef get_params(self, deep=True):
        return {}
    
def cleanText(text):
    text = text.strip().replace("\n", " ").replace("\r", " ")
    text = text.lower()
    return textdef tokenizeText(sample):
    tokens = parser(sample)
    lemmas = []
    for tok in tokens:
        lemmas.append(tok.lemma_.lower().strip() if tok.lemma_ != "-PRON-" else tok.lower_)
    tokens = lemmas
    tokens = [tok for tok in tokens if tok not in STOPLIST]
    tokens = [tok for tok in tokens if tok not in SYMBOLS]
    return tokens

下面我们定义一个函数来显示出最重要的特征,具有最高的相关系数的特征:

def printNMostInformative(vectorizer, clf, N):
    feature_names = vectorizer.get_feature_names()
    coefs_with_fns = sorted(zip(clf.coef_[0], feature_names))
    topClass1 = coefs_with_fns[:N]
    topClass2 = coefs_with_fns[:-(N + 1):-1]
    print("Class 1 best: ")
    for feat in topClass1:
        print(feat)
    print("Class 2 best: ")
    for feat in topClass2:
        print(feat)vectorizer = CountVectorizer(tokenizer=tokenizeText, ngram_range=(1,1))
clf = LinearSVC()

pipe = Pipeline([('cleanText', CleanTextTransformer()), ('vectorizer', vectorizer), ('clf', clf)])# data
train1 = train['Title'].tolist()
labelsTrain1 = train['Conference'].tolist()test1 = test['Title'].tolist()
labelsTest1 = test['Conference'].tolist()
# train
pipe.fit(train1, labelsTrain1)# test
preds = pipe.predict(test1)
print("accuracy:", accuracy_score(labelsTest1, preds))
print("Top 10 features used to predict: ")

printNMostInformative(vectorizer, clf, 10)
pipe = Pipeline([('cleanText', CleanTextTransformer()), ('vectorizer', vectorizer)])
transform = pipe.fit_transform(train1, labelsTrain1)vocab = vectorizer.get_feature_names()
for i in range(len(train1)):
    s = ""
    indexIntoVocab = transform.indices[transform.indptr[i]:transform.indptr[i+1]]
    numOccurences = transform.data[transform.indptr[i]:transform.indptr[i+1]]
    for idx, num in zip(indexIntoVocab, numOccurences):
        s += str((vocab[idx], num))

运行结果如下:

accuracy: 0.7463768115942029
Top 10 features used to predict:
Class 1 best:
(-0.9286024231429632, ‘database’)
(-0.8479561292796286, ‘chip’)
(-0.7675978546440636, ‘wimax’)
(-0.6933516302055982, ‘object’)
(-0.6728543084136545, ‘functional’)
(-0.6625144315722268, ‘multihop’)
(-0.6410217867606485, ‘amplifier’)
(-0.6396374843938725, ‘chaotic’)
(-0.6175855765947755, ‘receiver’)
(-0.6016682542232492, ‘web’)
Class 2 best:
(1.1835964521070819, ‘speccast’)
(1.0752051052570133, ‘manets’)
(0.9490176624004726, ‘gossip’)
(0.8468395015456092, ‘node’)
(0.8433107444740003, ‘packet’)
(0.8370516260734557, ‘schedule’)
(0.8344139814680707, ‘multicast’)
(0.8332232077559836, ‘queue’)
(0.8255429594734555, ‘qos’)
(0.8182435133796081, ‘location’)

接下来计算精度、召回、F1分值:

from sklearn import metrics
print(metrics.classification_report(labelsTest1, preds, target_names=df['Conference'].unique()))

运行结果如下;

                 precision    recall  f1-score   support
                                    

       VLDB       0.75      0.77      0.76       159
      ISCAS       0.90      0.84      0.87       299
   SIGGRAPH       0.67      0.66      0.66       106
    INFOCOM       0.62      0.69      0.65       139
        WWW       0.62      0.62      0.62       125

avg / total       0.75      0.75      0.75       828

好了,我们已经用spaCy完成了对论文的分类,完整源码下载: GITHUB


原文链接:Spacy实现文本分类 - 汇智网

目录
相关文章
|
2月前
|
自然语言处理 PyTorch 算法框架/工具
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
【10月更文挑战第1天】随着深度学习技术的进步,预训练模型已成为自然语言处理(NLP)领域的常见实践。这些模型通过大规模数据集训练获得通用语言表示,但需进一步微调以适应特定任务。本文通过简化流程和示例代码,介绍了如何选择预训练模型(如BERT),并利用Python库(如Transformers和PyTorch)进行微调。文章详细说明了数据准备、模型初始化、损失函数定义及训练循环等关键步骤,并提供了评估模型性能的方法。希望本文能帮助读者更好地理解和实现模型微调。
85 2
掌握从零到一的进阶攻略:让你轻松成为BERT微调高手——详解模型微调全流程,含实战代码与最佳实践秘籍,助你应对各类NLP挑战!
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP-新闻文本分类】处理新闻文本分类所有开源解决方案汇总
汇总了多个用于新闻文本分类的开源解决方案,包括TextCNN、Bert、LSTM、CNN、Transformer以及多模型融合方法。
54 1
|
4月前
|
机器学习/深度学习 存储 自然语言处理
【NLP-新闻文本分类】3 Bert模型的对抗训练
详细介绍了使用BERT模型进行新闻文本分类的过程,包括数据集预处理、使用预处理数据训练BERT语料库、加载语料库和词典后用原始数据训练BERT模型,以及模型测试。
75 1
|
4月前
|
机器学习/深度学习 数据采集 监控
【NLP-新闻文本分类】2特征工程
本文讨论了特征工程的重要性和处理流程,强调了特征工程在机器学习中的关键作用,并概述了特征工程的步骤,包括数据预处理、特征提取、特征处理、特征选择和特征监控。
33 1
|
4月前
|
数据采集 自然语言处理 数据挖掘
【NLP-新闻文本分类】1 数据分析和探索
文章提供了新闻文本分类数据集的分析,包括数据预览、类型检查、缺失值分析、分布情况,指出了类别不均衡和句子长度差异等问题,并提出了预处理建议。
55 1
|
4月前
|
机器学习/深度学习 自然语言处理 PyTorch
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--6 提分方案
在讯飞英文学术论文分类挑战赛中的提分技巧和实现方法,包括数据增强、投票融合、伪标签等策略,以及加快模型训练的技巧,如混合精度训练和使用AdamW优化器等。
43 0
|
4月前
|
数据采集 机器学习/深度学习 存储
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–5 Bert 方案
在讯飞英文学术论文分类挑战赛中使用BERT模型进行文本分类的方法,包括数据预处理、模型微调技巧、长文本处理策略以及通过不同模型和数据增强技术提高准确率的过程。
44 0
|
4月前
|
机器学习/深度学习 数据采集 自然语言处理
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–4 机器学习LGB 方案
在讯飞英文学术论文分类挑战赛中使用LightGBM模型进行文本分类的方案,包括数据预处理、特征提取、模型训练及多折交叉验证等步骤,并提供了相关的代码实现。
53 0
|
4月前
|
数据采集 自然语言处理 机器学习/深度学习
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案–3 TextCNN Fasttext 方案
讯飞英文学术论文分类挑战赛中使用TextCNN和FastText模型进行文本分类的方案,包括数据预处理、模型训练和对抗训练等步骤,并分享了模型调优的经验。
39 0
|
4月前
|
机器学习/深度学习 自然语言处理 数据挖掘
【NLP】讯飞英文学术论文分类挑战赛Top10开源多方案--2 数据分析
讯飞英文学术论文分类挑战赛数据集的分析,包括数据加载、缺失值检查、标签分布、文本长度统计等内容,并总结了数据的基本情况。
24 0