数据结构面试之六——二叉树的常见操作2(非递归遍历&二叉排序树)

简介: 《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。

题注

《面试宝典》有相关习题,但思路相对不清晰,排版有错误,作者对此参考相关书籍和自己观点进行了重写,供大家参考。

接上一节第五部分,主要分析二叉树的非递归遍历和二叉排序树的操作。

1. 非递归中序遍历

//1.依次将根节点root的左子树入栈,直到lchild=NULL,执行2

//2.将栈的元素出栈、访问;将当前指针指向节点的rchild,循环遍历。直到栈空为止!

      

template<typenameelemType>
       voidbinaryTreeType<elemType>::noRecursionInorderTraversal()                      //非递归中序遍历
       {
              cout<< "noRecursionInorderTraversal--------------------------->"<< endl;
              linkedStackType<nodeType<elemType>* > stack;
              nodeType<elemType>*current = root;
              while(current!= NULL || !stack.isEmptyStack())  //或者||
              {
                     if(current!= NULL)
                     {
                            stack.push(current);
                            current= current->llink;
                     }
                     else
                     {
                            stack.pop(current);
                            cout<< current->info << "\t"; //出栈的时候访问节点
                            current= current->rlink;
                     }
              }
              cout<< endl;
              cout<< "<------------------------noRecursionInorderTraversal"<< endl;
       }

2. 非递归先序遍历

//在中序遍历的基础上,访问次序发生变化;

//先序遍历,需要先逐个遍历根节点,然后依次处理其左、右孩子节点。

     

  template<typenameelemType>
       voidbinaryTreeType<elemType>::noRecursionPreorderTraversal()                     //非递归前序遍历
       {
              cout<<"noRecursionPreorderTraversal--------------------------->"<< endl;
              linkedStackType<nodeType<elemType>* > stack;
              nodeType<elemType>*current = root;
              while(current!= NULL || !stack.isEmptyStack())  //或者||
              {
                     if(current!= NULL)
                     {
                            cout<< current->info << "\t";   //先访问节点后入栈
                            stack.push(current);
                            current= current->llink;
                     }
                     else
                     {
                            stack.pop(current);
                            current= current->rlink;
                     }
              }
              cout<< endl;
              cout<< "<------------------------noRecursionPreorderTraversal"<< endl;
       }

3.      非递归后序遍历

由于访问的顺序为先左子树、然后右子树,最后根节点。并且对于每一个节点都是上述操作,所以,对于遍历来讲,需要识别当前节点类型是根(相对)、左孩子节点 、右孩子节点。故,我们设定了flag标记变量,flag=0初始标记,节点尚未入栈;在访问左孩子之前将flag置为1;在访问右孩子之前将flag置为2;并且在访问右孩子之后,将flag置为0。

//后序非递归遍历比较复杂..

     

  template<typenameelemType>
voidbinaryTreeType<elemType>::noRecursionPostorderTraversal()                    //非递归后序遍历
       {
              cout<<"noRecursionPostorderTraversal--------------------------->"<< endl;
              linkedStackType<nodeType<elemType>* > stack;
              linkedStackType<int>intStack;                       //标记位同步栈.
              nodeType<elemType>*current = root;
              intnflag = 0;                                      //初始标记为0.
              if(current== NULL)
              {
                     cout<< "The Stack is Empty!" << endl;
              }
              else
              {
                     //1.将头节点先入栈,
                     stack.push(current);
                     intStack.push(1);
               current = current->llink;        //注意此处需要调整指向******
                     while(!stack.isEmptyStack()&& !intStack.isEmptyStack())         
                     {
                            if(current!= NULL && nflag == 0)                                     
                            {
                               stack.push(current);
                                   intStack.push(1);   //标记位为1,[在访问左孩子之前,将其值置为1]。
                               current = current->llink;
                            }
                            else
                            {
                                   stack.pop(current);
                                   intStack.pop(nflag);    //此时的标记位为返回值,需要根据其做判断
                                   if(nflag== 1)         //说明下一步需要入栈的为右孩子.
                                   {
                                          stack.push(current);   //继续将该节点入栈,                                                              
                                         intStack.push(2);      //但[在访问右孩子之前,将其置为2]。
                                          current= current->rlink;           //访问右节点,
                                          nflag= 0;                                  //置标记位为0
                                   }
                                   else
                                   {
                                          cout<< current->info << " ";  //待左右子树都为空再访问节点。
                                   }
                            }
                     }
                     cout<< endl;
                     cout<< "<------------------------noRecursionPostorderTraversal"<< endl;
              }    
       }

 

4. 二叉排序树的搜索操作

明确概念,国内、国外的著作里提及的下三个概念等价,二叉搜索树=二叉查找树=二叉排序树。

//二叉排序树的查找存在以下几种情况:

//1.链表为空,提示并返回;

//2.链表非空,需要循环查找直到指针为空,若存在,则bfound=true;否则查找至最后bfound=缺省false。

template <class elemType>
boolbSearchTreeType<elemType>::search(const elemType& searchItem)
{
       nodeType<elemType>*current = new nodeType<elemType>;
       boolbFound = false;
 
       if(root== NULL)
       {
              cout<< "The bSearchTree is NULL\n";       //case1: 链表为空!
              returnfalse;
       }
       else
       {
              current= root;
              while(current!= NULL && !bFound) //case2:在链表中查找,根据大小锁定左、右子树.
              {
                     if(current->info== searchItem)
                     {
                            bFound= true;
                     }
                     elseif(current->info > searchItem)
                     {
                            current= current->llink;              //左子树
                     }
                     elseif(current->info < searchItem)
                     {
                            current= current->rlink;             //右子树
                     }
              }
       }
 
       returnbFound;
}
5.      二叉排序树的插入存在以下几种情况:

//1.链表为空,插入元素即为根节点;

//2.链表非空,需要寻找插入位置后插入。

//2.1插入元素已经存在,则提示出错。

//2.2总能找到大于或小于某节点的位置,记录trailcurrent完成插入操作。


template <class elemType>
voidbSearchTreeType<elemType>::insert(const elemType& insertItem)
{
       nodeType<elemType>*newNode = new nodeType<elemType>;
       nodeType<elemType>*current;
       nodeType<elemType>*trailCurrent;
 
       newNode->info= insertItem;
       newNode->llink= NULL;
       newNode->rlink= NULL;
 
       if(root== NULL)
       {
              root= newNode;                                //case1:树为空.
       }
       else
       {
              current= root;
              while(current!= NULL)                          //case2,3,4搜索才知道!
              {
                     trailCurrent= current;
                     if(current->info== insertItem)
                     {
                            cout<< "the elem is already exist!\n";  //case2:元素已经存在
                            return;
                     }
                     else
                     {
                            if(current->info> insertItem)
                            {
                                   current= current->llink;           //case3:锁定左侧位置...
                            }
                            else
                            {
                                   current= current->rlink;           //case4:锁定右侧位置...
                            }
                     }
              }//endwhile
 
              //case3,4根据大小进行链接
              if(trailCurrent->info< insertItem)           
              {
                     trailCurrent->rlink= newNode;
              }
              else
              {
                     trailCurrent->llink= newNode;
              }
 
       }//end else
}

6.      二叉排序树的删除存在以下几种情况【此处可能复杂些】:
//删除一个节点,要首先判断元素值在二叉排序树中是否存在,

//若不存在则返回;

//若存在则需要锁定其对应位置为1根节点;2叶节点;3其余节点。

//根据要删除的节点是否含有左右子树的不同,分为4种情况考虑,

//见deleteFromTree()函数。


template <class elemType>
voidbSearchTreeType<elemType>::deleteNode(const elemType& deleteItem)
{
       //1.查找节点
       //2.1找不到,不存在;
       //2.2找到,删除,调用函数
       nodeType<elemType>*current;
       nodeType<elemType>*trailCurrent;
       boolbFound = false;
 
       if(root== NULL)
       {
              cout<< "Can't delete an Empty BST" << endl;
              return;
       }
       else
       {
              current= root;
              trailCurrent= root;
              while(current != NULL && !bFound)
              {
                     if(current->info== deleteItem)
                     {
                            bFound= true;
                     }
                     elseif(current->info > deleteItem)
                     {
                            trailCurrent= current;
                            current= current->llink;    //左
                     }
                     else
                     {
                            trailCurrent= current;
                            current= current->rlink;   //右
                     }
              }//endwhile
 
              if(current== NULL)
              {
                     cout<< deleteItem << " is not Exist in the BST!\n" <<endl;
              }
              elseif(bFound)
              {
                     if(current== root)
                     {
                            deleteFromTree(root);                  //可能是根节点
                     }
                     elseif(trailCurrent->info > deleteItem)
                     {
                            deleteFromTree(trailCurrent->llink);//左半分支,调整trailCurrent的指向
                     }
                     elseif(trailCurrent->info < deleteItem)
                     {
                            deleteFromTree(trailCurrent->rlink);  //右半分支,调整trailCurrent的指向
                     }
              }//endif bFound
         }//end else
}


//[原理]:某节点的前驱是该节点左子树的最右端的节点(中序遍历的结果)


template <class elemType>
voidbSearchTreeType<elemType>::deleteFromTree(nodeType<elemType>*&p)
{
       nodeType<elemType>*temp;
       nodeType<elemType>*current;
       nodeType<elemType>*trailCurrent;
 
       if(p== NULL)
       {
              cout<< "The BST is NULL!" << endl;
              return;
       }
       if(p->llink== NULL && p->rlink == NULL)      //情况1,左右节点都为空(叶节点)
       {
              temp= p;
              p= NULL;
              deletetemp;
       }
       elseif( p->rlink == NULL)                     //情况2,右子树为空,左非空
       {
              temp= p;
              p= temp->llink;
              deletetemp;
       }
       elseif(p->llink == NULL)                      //情况3,左子树为空,右非空
       {
              temp= p;
              p= temp->rlink;
              deletetemp;
       }
       else                           //情况4,左右都非空[用中序遍历的前一个节点替换]
       {
              current= p->llink;
              trailCurrent= NULL;
 
              while(current->rlink!= NULL)
              {
                     trailCurrent= current;   //trailCurrent最终指向准备删除节点的前一个节点
                     current= current->rlink;
              }
 
              p->info= current->info;                //信息赋值
 
              if(trailCurrent== NULL)              //仅一个左孩子节点
              {
                     p->rlink = current->llink;         
              }
              else
              {
                     trailCurrent->rlink= current->llink; //给删除前点的前面一个节点调整指针指向
              }
              deletecurrent;
       }
 
}

作者:铭毅天下
来源:CSDN
原文:https://blog.csdn.net/laoyang360/article/details/7884449
版权声明:本文为博主原创文章,转载请附上博文链接!

相关文章
|
10天前
|
存储 算法
非递归实现后序遍历时,如何避免栈溢出?
后序遍历的递归实现和非递归实现各有优缺点,在实际应用中需要根据具体的问题需求、二叉树的特点以及性能和空间的限制等因素来选择合适的实现方式。
19 1
|
1月前
|
算法 前端开发 Java
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
这篇文章总结了单链表的常见面试题,并提供了详细的问题分析、思路分析以及Java代码实现,包括求单链表中有效节点的个数、查找单链表中的倒数第k个节点、单链表的反转以及从尾到头打印单链表等题目。
33 1
数据结构与算法学习四:单链表面试题,新浪、腾讯【有难度】、百度面试题
|
1月前
|
算法 搜索推荐 Shell
数据结构与算法学习十二:希尔排序、快速排序(递归、好理解)、归并排序(递归、难理解)
这篇文章介绍了希尔排序、快速排序和归并排序三种排序算法的基本概念、实现思路、代码实现及其测试结果。
23 1
|
2月前
|
算法
二叉树面试题
本文介绍了二叉树相关的几个经典算法问题。首先讲解了如何判断两棵树是否完全相同(LeetCode 100),并给出了代码示例。接着讨论了如何判断一棵树是否是另一棵树的子树(LeetCode 572),详细分析了子树的定义及判断方法。然后介绍了翻转二叉树(LeetCode 226)的实现方法,即在遍历时交换每个节点的左右子树。随后探讨了如何判断一棵树是否是对称的(LeetCode 101),通过对左右子树的递归比较来实现。最后分析了平衡二叉树的概念(LeetCode 110)及判断方法,并给出了优化后的代码示例。此外,还简要介绍了二叉树遍历及二叉树最近公共祖先(LeetCode 236)的问题
28 6
二叉树面试题
|
1月前
|
存储 算法 数据管理
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
这篇文章通过需求分析、代码实现和测试验证,详细介绍了二叉排序树的创建、遍历和删除操作,以及二叉平衡树(AVL)的自平衡特性和单旋转操作,旨在提高树结构在数据管理中的效率和性能。
30 0
数据结构与算法学习二零:二叉排序树(BST)、平衡二叉树(AVL)
|
1月前
|
存储
【数据结构】二叉树链式结构——感受递归的暴力美学
【数据结构】二叉树链式结构——感受递归的暴力美学
|
1月前
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
【初阶数据结构】打破递归束缚:掌握非递归版快速排序与归并排序
|
26天前
|
算法 Java
JAVA 二叉树面试题
JAVA 二叉树面试题
16 0
|
1月前
|
算法 定位技术
数据结构与算法学习九:学习递归。递归的经典实例:打印问题、阶乘问题、递归-迷宫问题、八皇后问题
本文详细介绍了递归的概念、重要规则、形式,并展示了递归在解决打印问题、阶乘问题、迷宫问题和八皇后问题等经典实例中的应用。
40 0
|
2月前
|
存储 C语言
数据结构基础详解(C语言): 树与二叉树的应用_哈夫曼树与哈夫曼曼编码_并查集_二叉排序树_平衡二叉树
本文详细介绍了树与二叉树的应用,涵盖哈夫曼树与哈夫曼编码、并查集以及二叉排序树等内容。首先讲解了哈夫曼树的构造方法及其在数据压缩中的应用;接着介绍了并查集的基本概念、存储结构及优化方法;随后探讨了二叉排序树的定义、查找、插入和删除操作;最后阐述了平衡二叉树的概念及其在保证树平衡状态下的插入和删除操作。通过本文,读者可以全面了解树与二叉树在实际问题中的应用技巧和优化策略。

热门文章

最新文章