高可用服务架构设计(10)-Hystrix隔离策略细粒度控制

简介: 对于资源隔离,做更加深入一些的讲解,除了可以选择隔离策略,对选择的隔离策略,可以做一定的细粒度的控制

0 Github

资源隔离两种策略

  • 线程池隔离
  • 信号量隔离

对于资源隔离,做更加深入一些的讲解,除了可以选择隔离策略,对选择的隔离策略,可以做一定的细粒度的控制

1 execution.isolation.strategy

指定HystrixCommand.run()的资源隔离策略

  • THREAD
    基于线程池
// to use thread isolation
HystrixCommandProperties.Setter()
   .withExecutionIsolationStrategy(ExecutionIsolationStrategy.THREAD)
  • SEMAPHORE
    基于信号量// to use semaphore isolation

HystrixCommandProperties.Setter()
.withExecutionIsolationStrategy(ExecutionIsolationStrategy.SEMAPHORE)线程池机制,每个command运行在一个线程中,限流是通过线程池的大小来控制的
信号量机制,command是运行在调用线程中,但是通过信号量的容量来进行限流

如何在线程池和信号量之间做选择呢?

默认的策略为线程池

线程池其实最大的好处就是对于网络访问请求,若超时,可以避免调用线程阻塞住

而使用信号量的场景,通常是针对超大并发量的场景下,每个服务实例每秒都几百的QPS

此时用线程池,线程一般不会太多,可能撑不住那么高的并发

要撑住,可能要耗费大量的线程资源,那么就是用信号量,来限流保护

一般用信号量常见于那种基于纯内存的一些业务逻辑服务,而不涉及到任何网络访问请求

netflix有100+的command运行在40+的线程池中,只有少数command是不运行在线程池中的,就是从纯内存中获取一些元数据,或者是对多个command包装起来的facacde command,是用信号量限流的

2 command名称 & command组

线程池隔离,依赖服务->接口->线程池,如何来划分

每个command,都可以设置一个自己的名称,同时可以设置一个自己的组

private static final Setter cachedSetter = 
    Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"))
        .andCommandKey(HystrixCommandKey.Factory.asKey("HelloWorld"));    

public CommandHelloWorld(String name) {
    super(cachedSetter);
    this.name = name;
}
  • command group
    一个非常重要的概念,默认情况下,因为就是通过command group来定义一个线程池的,而且还会通过command group来聚合一些监控和报警信息

同一个command group中的请求,都会进入同一个线程池中

3 command线程池

ThreadPoolKey代表了一个HystrixThreadPool,用来进行统一监控,统计,缓存

默认的threadpool key就是command group名称

每个command都会跟它的ThreadPoolKey对应的ThreadPool绑定

如果不想直接用command group,也可以手动设置thread pool name

public CommandHelloWorld(String name) {
    super(Setter.withGroupKey(HystrixCommandGroupKey.Factory.asKey("ExampleGroup"))
            .andCommandKey(HystrixCommandKey.Factory.asKey("HelloWorld"))
            .andThreadPoolKey(HystrixThreadPoolKey.Factory.asKey("HelloWorldPool")));
    this.name = name;
}

command threadpool => command group => command key

  • command key
    代表了一类command,代表底层的依赖服务的一个接口
  • command group
    代表了某一个底层的依赖服务,合理,一个依赖服务可能会暴露出来多个接口,每个接口就是一个command key

command group

在逻辑上去组织起来一堆command key的调用,统计信息,成功次数,timeout超时次数,失败次数,可以看到某一个服务整体的一些访问情况

推荐是根据一个服务去划分出一个线程池,command key默认都是属于同一个线程池的

比如说你以一个服务为粒度,估算出来这个服务每秒的所有接口加起来的整体QPS在100左右

你调用那个服务的当前服务,部署了10个服务实例,每个服务实例上,其实用这个command group对应这个服务,给一个线程池,量大概在10个左右,就可以了,你对整个服务的整体的访问QPS大概在每秒100左右

一般来说,command group是用来在逻辑上组合一堆command的

举个例子,对于一个服务中的某个功能模块来说,希望将这个功能模块内的所有command放在一个group中,那么在监控和报警的时候可以放一起看

command group,对应了一个服务,但是这个服务暴露出来的几个接口,访问量很不一样,差异非常之大

你可能就希望在这个服务command group内部,包含的对应多个接口的command key,做一些细粒度的资源隔离

对同一个服务的不同接口,都使用不同的线程池

command key -> command group

command key -> 自己的threadpool key

逻辑上来说,多个command key属于一个command group,在做统计的时候,会放在一起统计

每个command key有自己的线程池,每个接口有自己的线程池,去做资源隔离和限流

但对于thread pool资源隔离来说,可能是希望能够拆分的更加一致一些,比如在一个功能模块内,对不同的请求可以使用不同的thread pool

command group一般来说,可以是对应一个服务,多个command key对应这个服务的多个接口,多个接口的调用共享同一个线程池

如果说你的command key,要用自己的线程池,可以定义自己的threadpool key,就ok了

4 coreSize

设置线程池的大小,默认是10

HystrixThreadPoolProperties.Setter()
                            .withCoreSize(int value)

一般来说,用这个默认的10个线程大小就够了

5 queueSizeRejectionThreshold

控制queue满后reject的threshold,因为maxQueueSize不允许热修改,因此提供这个参数可以热修改,控制队列的最大值

HystrixCommand在提交到线程池之前,其实会先进入一个队列中,这个队列满了之后,才会reject

默认值是5

HystrixThreadPoolProperties.Setter()
   .withQueueSizeRejectionThreshold(int value)
  • 线程池+queue的工作原理

6 isolation.semaphore.maxConcurrentRequests

设置使用SEMAPHORE隔离策略的时候,允许访问的最大并发量,超过这个最大并发量,请求直接被reject

这个并发量的设置,跟线程池大小的设置,应该是类似的

但是基于信号量的话,性能会好很多,而且hystrix框架本身的开销会小很多

默认值是10,设置的小一些,否则因为信号量是基于调用线程去执行command的,而且不能从timeout中抽离,因此一旦设置的太大,而且有延时发生,可能瞬间导致tomcat本身的线程资源本占满

参考

  • 《Java工程师面试突击第1季-中华石杉老师》
目录
相关文章
|
2月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
2月前
|
运维 负载均衡 监控
深入探索微服务架构的核心要素与实践策略
在当今软件开发领域,微服务架构已成为构建灵活、可扩展企业级应用的首选模式。本文旨在剖析微服务架构的设计理念,通过实例阐述其核心组件如服务注册与发现、配置管理、熔断机制等如何协同工作,以提升系统的敏捷性和维护性。同时,探讨了在实践中应对分布式系统复杂性的最佳策略,包括负载均衡、服务监控和日志聚合等关键技术,旨在为后端开发者提供一套完整的微服务实施指南。
49 1
|
1月前
|
运维 负载均衡 安全
深度解析:Python Web前后端分离架构中WebSocket的选型与实现策略
深度解析:Python Web前后端分离架构中WebSocket的选型与实现策略
81 0
|
9天前
|
监控 Cloud Native Java
云原生架构下微服务治理策略与实践####
【10月更文挑战第20天】 本文深入探讨了云原生环境下微服务架构的治理策略,通过分析当前技术趋势与挑战,提出了一系列高效、可扩展的微服务治理最佳实践方案。不同于传统摘要概述内容要点,本部分直接聚焦于治理核心——如何在动态多变的分布式系统中实现服务的自动发现、配置管理、流量控制及故障恢复,旨在为开发者提供一套系统性的方法论,助力企业在云端构建更加健壮、灵活的应用程序。 ####
54 10
|
5天前
|
监控 安全 Cloud Native
云原生安全:Istio在微服务架构中的安全策略与实践
【10月更文挑战第26天】随着云计算的发展,云原生架构成为企业数字化转型的关键。微服务作为其核心组件,虽具备灵活性和可扩展性,但也带来安全挑战。Istio作为开源服务网格,通过双向TLS加密、细粒度访问控制和强大的审计监控功能,有效保障微服务间的通信安全,成为云原生安全的重要工具。
16 2
|
5天前
|
弹性计算 监控 Cloud Native
云原生架构下的性能优化实践与策略####
在数字化转型加速的今天,云原生技术以其弹性、敏捷和高效的特点成为企业IT架构转型的首选。本文深入探讨了云原生架构的核心理念,通过具体案例分析,揭示了性能优化的关键路径与策略,为开发者和企业提供了可操作的实践指南。 ####
|
16天前
|
负载均衡 监控 Cloud Native
云原生架构下的微服务治理策略与实践####
在数字化转型加速的今天,云原生技术以其高效、灵活、可扩展的特性成为企业IT架构转型的首选。本文深入探讨了云原生环境下微服务治理的策略与实践路径,旨在为读者提供一个系统性的微服务治理框架,涵盖从服务设计、部署、监控到运维的全生命周期管理,助力企业在云端构建更加稳定、高效的业务系统。 ####
|
4天前
|
缓存 资源调度 Cloud Native
云原生架构下的性能优化实践与策略####
【10月更文挑战第26天】 本文深入探讨了云原生环境下性能优化的核心原则与实战技巧,旨在为开发者和企业提供一套系统性的方法,以应对日益复杂的微服务架构挑战。通过剖析真实案例,揭示在动态扩展、资源管理、以及服务间通信等方面的常见瓶颈,并提出针对性的优化策略,助力企业在云端环境中实现更高效、更稳定的应用部署。 ####
10 0
|
1月前
|
存储 安全 数据安全/隐私保护
探究现代操作系统的架构与优化策略
本文旨在深入探讨现代操作系统的核心架构及其性能优化方法。通过分析操作系统的基本组成、关键技术和面临的挑战,揭示如何通过技术手段提升系统效率和用户体验。不同于传统的技术文章摘要,这里不罗列具体研究方法和结果,而是以简明扼要的语言概述文章的核心内容和思考方向,为读者提供宏观视角和技术深度。 生成
23 3
|
2月前
|
监控 安全 API
深入探索微服务架构的核心要素与实践策略
在当今软件开发领域,微服务架构以其独特的优势——高度的模块化、灵活性以及可扩展性,已经成为构建复杂、大型应用系统的不二选择。不同于传统的单体架构,它能够显著提升开发效率,促进技术生态的多样化发展。本文将从微服务架构的核心特性出发,探讨其设计理念、关键技术及在实践中的应用策略,旨在为后端开发者提供一份详尽的指南,帮助他们理解和掌握这一现代软件架构的精髓。
28 3

热门文章

最新文章