千亿级的数据难题,优酷工程师怎么解决?

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
日志服务 SLS,月写入数据量 50GB 1个月
简介: 优酷一天的日志量会达到千亿级别,面对如此大的数据样本,2017年5月,优酷完成了从Hadoop迁移到阿里云MaxCompute,实现计算消耗和储存的消耗呈下降趋势,得到了非常大的收益。今天,阿里数据技术专家门德亮给大家做个分享,从为什么要用MaxCompute,到优酷的业务场景下典型的方案及应用分析,聊聊迁移后对业务及平台的具体价值。

1

阿里妹导读:优酷一天的日志量会达到千亿级别,面对如此大的数据样本,2017年5月,优酷完成了从Hadoop迁移到阿里云MaxCompute,实现计算消耗和储存的消耗呈下降趋势,得到了非常大的收益。今天,阿里数据技术专家门德亮给大家做个分享,从为什么要用MaxCompute,到优酷的业务场景下典型的方案及应用分析,聊聊迁移后对业务及平台的具体价值。本文内容根据演讲视频以及PPT整理而成,希望对你有所助益。

大家好,我是门德亮,很荣幸,我正好见证了优酷从没有MaxCompute到有的,这样一个历程,我们正好是在快到5年的时候,做了从Hadoop到MaxCompute的这样一个升级。

2016年5月到2019年5月优酷的发展历程。整个用户数,还有表的数据,实际上是呈指数式增长的。但是在2017年5月,当优酷完成了整个Hadoop迁移MaxCompute后,优酷的计算消耗,还有储存的消耗实际上是呈下降趋势的,整个迁移得到了非常大的收益。

2

下面说一下优酷的业务特点。

第一个特点是大数据平台整个的用户复杂度,不止是数据的同学和技术的同学在使用,还会包括一些BI同学,测试同学,甚至产品运营都可能去使用这个大数据的平台。

第二个特点就是业务复杂,优酷是一个视频网站,它有非常复杂的业务场景,从日志分类上,除了像页面浏览,还会有一些播放相关的数据、性能相关的数据。从整个的业务模式上,有直播、有会员、有广告、有大屏等这样一些非常不一样的场景。

第三个特点,就是数据量非常巨大,一天的日志量会达到千亿级别,这是一个非常庞大的数据量,而且会做非常复杂的计算。

第四个比较有意思,不管是小公司、大公司,对成本的意识是非常高的。优酷也是有非常严格的预算,包括在阿里集团内是有非常严格的预算系统的,但是我们也经常会去做一些重要的战役,像双十一战役,像我们暑期的世界杯战役,还有春节也会搞各种战役。这其实对计算资源的弹性要求是非常高的。

基于上面的优酷的业务特点,我整理了MaxCompute可以完美的支持我们业务的几个特点。

3

  1. 简单易用。
  2. 完善的生态。
  3. 性能非常强悍。
  4. 资源使用非常弹性。

第一个特点,简单易用。MaxCompute有一个非常完整的链路,不管是从数据开发,还是数据运维,包括数据集成,数据质量的管控,还有整个数据地图,数据安全。当年优酷从Hadoop迁到MaxCompute之后,我们最大的体会是不用经常自己半夜起来去维护集群了,不用去跑任务了,之前别人提一个需求过来,我可能要排几周,现在我可以告诉他,我给你马上跑一下,就可以出来了。包括之前像分析师BI还要登录客户端,写脚本,自己写调度,经常会说我的数据今天为什么没出来?包括高层看的数据,可能要到12点钟才能出来。而现在基本上所有重要的数据都会在7点钟产出,包括一些基本的业务需求,其实分析师或者产品,他们自己都可以实现了,不需要所有需求都提到数据这边。

4

第二个特点,完整的生态。优酷在2017年之前是完全基于Hadoop的生态,迁到MaxCompute之后,是基于阿里云提供的Serverless大数据服务的生态。大家可以在开源上看到的组件,在整个的MaxCompute上都是有的,而且比开源的要更好用、更简单。从架构图上可以看到,我们中间是MaxCompute,左侧依赖的Mysql、Hbase、ES、Redis这些都是由同步中心去做一个双向的同步。右侧会有资源管理、资源监控、数据监控,包括数据资产,还有一些数据规范。我们下层的数据输入,包括一些集团的采集工具,再往上边,有提供给开发人员用的DataWorks,包括一些命令行的工具,有提供给BI人员用的QuickBI及数据服务。

5

第三个特点,强悍的性能,MaxCompute支撑了优酷EB级的数据存储,千亿级的数据样本分析,包括千亿级的数据报表,10W级实例的并发、任务。这些在之前维护Hadoop的时候,是想都不敢想的。

6

第四个特点,资源使用的弹性。我们在2016年迁移之前,其实优酷的Hadoop集群规模已经达到了一千多台,这个当时还是一个比较大的规模。当时我们遇到了很多问题,包括像NameNode 这种内存的问题,机房没有办法再扩容的问题,当时是非常痛苦的,包括一些运维管理上面的问题。我们不断地去问运维要资源,运维说你们已经花了资源,多少钱。我们面临的问题是计算资源如何按需使用,夜里的作业很多,到了午后,整个集群都空下来了,没有人用,造成了浪费。其实MaxCompute完美地解决了这个问题。

7

第一个,它是按用量计费的,不是说给你多少台机器,就收你多少钱,是你用了多少资源收多少钱的,在成本上来说,比自己去维护集群,可能是一个砍半(降50%)的收益。

第二个,实际上MaxCompue计算资源是可以分时的,比如说生产队列,凌晨的时候会调高一些,保证报表能够尽快出来。到白天时候,让开发的计算资源高一些,可以让分析师、开发去临时跑一些数据,会更顺畅一些。

第三个,MaxCompute快速的扩容能力,比如说突然有一个比较强的业务需求,发现数据跑不动了,计算资源不够,所有的队列都堵死了,这个时候其实可以直接跟运维说一声,帮忙一键扩容,两秒钟敲一个命令就搞定了。这样,所有的资源可以迅速地消化下去。

8

这张图实际上是优酷,包括可能现在阿里集团内部一些非常典型的技术架构图。中间可以看到,MaxCompute在中间核心的位置,左侧主要是一个输入,右侧是一个输出的趋向,绿色的线是一个实时的链路,包括现在我们从整个的数据源上,比如DB也好或者服务器的本地日志Log也好,我们通过TT&Datahub存储到MaxCompute上面做分析。当然现在非常火的Flink实时计算,其实是作为一个实时处理的链路。

包括DB的同步,除了实时的链路,DB也会去通过按天/按小时,把数据同步到MaxCompute,数据计算结果也可以同步到Hbase、Mysql这种DB上面。再通过统一的服务层对应用提供服务。下面这个是机器学习Pai做的一些算法训练,再把训练的结果通过OSS传到一个算法的应用上面去。

9

这张图可能也是业界比较流行的一个数仓分层的图,因为我们这边是数据中台,所有的数据都是统一从ods层cdm层,然后ads层,去一层一层地往上去做精细,再到最上面,通过接口服务、文件服务、SQL服务,去提供多样化的服务。再往上面,提供对内的一些数据产品,对高管、对小二,可能还有一些对外的,比如说像优酷的播放数,包括热度这些对应用的数据。

10

这张图其实就是我们从Hadoop迁到MaxCompute平台上以来,两个非常经典的案例。我们通过数据中台对不同场景的用户打通,来去赋能到两个不同的场景,提升业务价值。

第二个,可能是内部的,我们通过优酷,还有集团内部的一些BU去做换量,我们通过统一的标签去做样本放大,把优酷的量导给其它的BU,把其它BU的量导给优酷,这样去达到一个共赢的效果。

11

这张图是大部分互联网公司不太会涉及到的,就是关于反作弊的问题。这个是我们在MaxCompute做的一个反作弊的架构,通过原始的数据去提取它的特征,然后再通过算法模型,包括机器学习、深度学习、图模型去支持流量反作弊、渠道反作弊等等。再通过业务场景上反作弊的监控工具,把监控到的作弊信息去打一个黑白样本,再把这个黑白样本跟特征一起来不断地迭代优化算法模型。同时针对算法模型,做一个模型的评价,不断来完善反作弊体系。

最后一点,其实还是跟成本相关,在日常使用中,一定是有小白用户或者一些新来的用户去错误地使用或者不在乎地使用一些资源,比如经常会有一些实习生或者是非技术的同学,如分析师,一个SQL消费比较高,这个其实是非常浪费资源,而且可能他一个任务,让其他所有人的任务都在这儿等着排队,实际上我们会去对整个的资源做一个治理。

从节点的粒度上,通过大数据来治理大数据,我们可以算出哪些表产出来之后,多少天没有被读取的,包括它的访问跨度可能没有那么大的,我们会去做下线或者去做治理,有一些业务场景可能并不是非常的重要或者它的时间要求没有那么高,比如一些算法训练,可以去做一些错峰的调度,保证水位不要太高。从MaxCompute任务的角度,可以算出哪些任务有数据倾斜、哪些数据可能会有相似计算,哪些任务需要去做MapJoin,哪些任务需要去做一些裁剪,然后来节省它的IO。还有哪些任务会去做暴力扫描,扫一个月、扫一年的数据,哪些数据可能会有这样一个数据膨胀,比如说它做了CUBE之类的这种复杂计算,一些算法模型的迭代;我们通过数据计算出来的这些迹象,去反推用户,来去提高它的这样一个数据的质量分,来去达到我们降低整个计算资源的目的。

在计算平台的角度,我们也持续地在使用MaxCompute推出的一些非常高级的用法,比如我们这边的HBO、Hash Cluster、Aliorc;

12

第一个,HBO就是我们基于一个历史的优化,这样避免了用户不知道怎么调参,我可能为了自己任务快一点,就调一个特别大的参数,这样的话,对集成的资源是非常浪费的。通过这个功能,用户就不用去调参数,集群自动调好,用户就写好自己业务逻辑就好了。

第二个,可能就是最近两年推出的Hash Cluster,当时在使用Hadoop的时候经常会出现,两个大表Join的时候计算不出来,这个Hash Cluster其实是一个优化的利器。大表跟小表Join,可以做一些分发,做一些优化。大表跟大表就涉及到一个排序的问题。这个Hash Cluster,实际上就是提前把数据排好,中间省掉很多计算环节,来达到效率提升的目的。

第三个,Aliorc,在一些固定的场景上面,可以稳定的提升20%的计算效率。

第四个,Session。对一些比较小的数据,直接就放到SSD或缓存里面,一个节点下游有100个叶子场景,是非常友好的,因为低延迟秒出结果。同时,优酷也在使用Lightning解决计算加速,这个是在一个计算架构方案上的优化,它是一个MPP的架构。

13

最后一页是存储的优化,因为像一些关键的原始数据或者是需要审计的数据是不能删的,永久不能删的。实际上就会造成我们数据存储的趋势是一直往上不减的,计算会在某一个时间点达到一个平衡。当前用这么多的计算资源,再往后,其实应该也不会再大涨了,比如说旧的业务逻辑下掉了,会换新的业务逻辑,这样会保持在一个相对平稳的波动上面。

但是储存,因为它有一些历史的数据是永远不能删的,可能会出现一直在增长,而且是指数级的。所以我们也会持续关注存储的情况,还是通过大数据来治大数据,去看哪些表的访问跨度比较小,来去做生命周期的优化,来去控制它的增速。还有刚才提到的Aliorc,实际上也是做压缩的。我们会去做一些大字段的拆分,来提高压缩的比例。

共建大数据生态,企业级大数据平台开发者版已正式发布,点击文末“阿里技术”阅读原文立即申请。

原文发布时间为: 2019-07-9
本文作者:阿里技术
本文来自云栖社区合作伙伴“ 阿里技术”,了解相关信息可以关注“ 阿里技术”。

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
2月前
|
存储 运维 物联网
TDengine 与新奥新智达成合作,支撑海量设备、亿级数据
在物联网和智能化技术飞速发展的时代,产业对实时数据的深度分析与处理需求达到了前所未有的高度。物联网设备不断生成的时序数据不仅为企业带来了丰富的数据资源,同时也对存储和计算能力提出了严峻挑战。如何在应对数据洪流的同时,实现高效处理与低成本存储,成为众多企业在数智化转型过程中面临的核心课题。在这样的行业背景下,新奥新智选择与 TDengine 展开合作,共同探索面向未来的数据解决方案。
37 0
|
网络协议 Java 关系型数据库
微信支撑10亿用户背后核心技术:亿级流量Java并发与网络编程实战
大家可能不知道,支撑微信10亿用户之后,最基础也是最核心的技术是什么?那就是网络编程。 越是大型互联网通讯项目,越是对网络编程的落地要求越高。落地,意味着对实战的要求更高。
《飞天技术汇—千万级直播高稳定的挑战和实践 裘良科》电子版地址
飞天技术汇—千万级直播高稳定的挑战和实践 裘良科
103 0
《飞天技术汇—千万级直播高稳定的挑战和实践 裘良科》电子版地址
|
SQL 缓存 监控
深度专访高楼:如何成为一个身价百万的性能工程师?
很多人眼里的性能,不过是开发的边角料,看待性能工程师,天然就戴着一副有色眼镜。其实,一个可以独立做性能分析的人,在市场上抢都抢不到。可是,怎么才能成为这样的性能工程师呢?InfoQ 深度采访盾山科技 CEO、7DGroup 创始人,他也是 2022 年 QCon+ 【自动化测试】专题的出品人。他将从底层为你揭秘性能高手的思维模式,以期帮助大量性能工程师们拨开职业的迷雾,登上身价百万的台阶。
258 0
深度专访高楼:如何成为一个身价百万的性能工程师?
|
存储 编解码 缓存
微信朋友圈千亿访问量背后的技术挑战和实践总结
微信朋友圈千亿访问量背后的技术挑战和实践总结
384 0
微信朋友圈千亿访问量背后的技术挑战和实践总结
|
机器学习/深度学习 自然语言处理 算法
每天几十万条用户反馈,高德工程师如何提升处理效率?
作为国内领先的出行大数据公司,高德地图拥有众多的用户和合作厂商,这为高德带来了海量的出行数据,同时通过各个渠道,这些用户也在主动地为我们提供大量的反馈信息,这些信息是需要我们深入挖掘并作用于产品的,是高德地图不断进步和持续提升服务质量的重要手段。本文将主要介绍针对用户反馈的文本情报,如何利用机器学习的方法来提高大量用户数据的处理效率、尽可能实现自动化的解题思路。
975 0
每天几十万条用户反馈,高德工程师如何提升处理效率?
|
运维 监控 Cloud Native
|
分布式计算 MaxCompute Hadoop
千亿级的数据难题,优酷工程师怎么解决?
今天,阿里数据技术专家门德亮给大家做个分享,从为什么要用MaxCompute,到优酷的业务场景下典型的方案及应用分析,聊聊迁移后对业务及平台的具体价值。本文内容根据演讲视频以及PPT整理而成,希望对你有所助益。
2408 0
|
存储 运维 网络协议
蚂蚁金服面对亿级并发场景的组件体系设计
5 月 6 日,InfoQ 主办的 QCon 2019 全球软件开发大会在北京举行。蚂蚁金服技术专家吕丹(凝睇)在大会上做了《蚂蚁金服面对亿级并发场景的组件体系设计》的分享,我们根据演讲内容整理成文。
3588 0
|
关系型数据库 大数据 分布式数据库
下一篇
DataWorks