Python爬虫入门教程 35-100 知乎网全站用户爬虫 scrapy

简介: 爬前叨叨全站爬虫有时候做起来其实比较容易,因为规则相对容易建立起来,只需要做好反爬就可以了,今天咱们爬取知乎。继续使用scrapy当然对于这个小需求来说,使用scrapy确实用了牛刀,不过毕竟本博客这个系列到这个阶段需要不断使用scrapy进行过度,so,我写了一会就写完了。

爬前叨叨

全站爬虫有时候做起来其实比较容易,因为规则相对容易建立起来,只需要做好反爬就可以了,今天咱们爬取知乎。继续使用scrapy当然对于这个小需求来说,使用scrapy确实用了牛刀,不过毕竟本博客这个系列到这个阶段需要不断使用scrapy进行过度,so,我写了一会就写完了。

你第一步找一个爬取种子,算作爬虫入口

https://www.zhihu.com/people/zhang-jia-wei/following

我们需要的信息如下,所有的框图都是我们需要的信息。

image

获取用户关注名单

通过如下代码获取网页返回数据,会发现数据是由HTML+JSON拼接而成,增加了很多解析成本

class ZhihuSpider(scrapy.Spider):
    name = 'Zhihu'
    allowed_domains = ['www.zhihu.com']
    start_urls = ['https://www.zhihu.com/people/zhang-jia-wei/following']

    def parse(self, response):
        all_data = response.body_as_unicode()
        print(all_data)

首先配置一下基本的环境,比如间隔秒数,爬取的UA,是否存储cookies,启用随机UA的中间件DOWNLOADER_MIDDLEWARES

middlewares.py 文件

from zhihu.settings import USER_AGENT_LIST # 导入中间件
import random

class RandomUserAgentMiddleware(object):
    def process_request(self, request, spider):
        rand_use  = random.choice(USER_AGENT_LIST)
        if rand_use:
            request.headers.setdefault('User-Agent', rand_use)

setting.py 文件

BOT_NAME = 'zhihu'

SPIDER_MODULES = ['zhihu.spiders']
NEWSPIDER_MODULE = 'zhihu.spiders'
USER_AGENT_LIST=[  # 可以写多个,测试用,写了一个
    "Mozilla/5.0 (Windows NT 10.0; WOW64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/68.0.3440.106 Safari/537.36"
]
# Obey robots.txt rules
ROBOTSTXT_OBEY = False
# See also autothrottle settings and docs
DOWNLOAD_DELAY = 2
# Disable cookies (enabled by default)
COOKIES_ENABLED = False
# Override the default request headers:
DEFAULT_REQUEST_HEADERS = {
  'Accept': 'text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=0.8',
  'Accept-Language': 'en',
}
# See https://doc.scrapy.org/en/latest/topics/downloader-middleware.html
DOWNLOADER_MIDDLEWARES = {
    'zhihu.middlewares.RandomUserAgentMiddleware': 400,
}
# Configure item pipelines
# See https://doc.scrapy.org/en/latest/topics/item-pipeline.html
ITEM_PIPELINES = {
   'zhihu.pipelines.ZhihuPipeline': 300,
}

主要爬取函数,内容说明

  1. start_requests 用来处理首次爬取请求,作为程序入口
  2. 下面的代码主要处理了2种情况,一种是HTML部分,一种是JSON部分
  3. JSON部分使用re模块进行匹配,在通过json模块格式化
  4. extract_first() 获取xpath匹配数组的第一项
  5. dont_filter=False scrapy URL去重
 # 起始位置
    def start_requests(self):
        for url in self.start_urls:
            yield scrapy.Request(url.format("zhang-jia-wei"), callback=self.parse)

    def parse(self, response):

        print("正在获取 {} 信息".format(response.url))
        all_data = response.body_as_unicode()

        select = Selector(response)

        # 所有知乎用户都具备的信息
        username = select.xpath("//span[@class='ProfileHeader-name']/text()").extract_first()          # 获取用户昵称
        sex = select.xpath("//div[@class='ProfileHeader-iconWrapper']/svg/@class").extract()
        if len(sex) > 0:
            sex = 1 if str(sex[0]).find("male") else 0
        else:
            sex = -1
        answers = select.xpath("//li[@aria-controls='Profile-answers']/a/span/text()").extract_first()
        asks = select.xpath("//li[@aria-controls='Profile-asks']/a/span/text()").extract_first()
        posts = select.xpath("//li[@aria-controls='Profile-posts']/a/span/text()").extract_first()
        columns = select.xpath("//li[@aria-controls='Profile-columns']/a/span/text()").extract_first()
        pins = select.xpath("//li[@aria-controls='Profile-pins']/a/span/text()").extract_first()
        # 用户有可能设置了隐私,必须登录之后看到,或者记录cookie!
        follwers = select.xpath("//strong[@class='NumberBoard-itemValue']/@title").extract()



        item = ZhihuItem()
        item["username"] = username
        item["sex"] = sex
        item["answers"] = answers
        item["asks"] = asks
        item["posts"] = posts
        item["columns"] = columns
        item["pins"] = pins
        item["follwering"] = follwers[0] if len(follwers) > 0 else 0
        item["follwers"] = follwers[1] if len(follwers) > 0 else 0

        yield item



        # 获取第一页关注者列表
        pattern = re.compile('<script id=\"js-initialData\" type=\"text/json\">(.*?)<\/script>')
        json_data = pattern.search(all_data).group(1)
        if json_data:
            users = json.loads(json_data)["initialState"]["entities"]["users"]
        for user in users:
            yield scrapy.Request(self.start_urls[0].format(user),callback=self.parse, dont_filter=False)

在获取数据的时候,我绕开了一部分数据,这部分数据可以通过正则表达式去匹配。
image

数据存储,采用的依旧是mongodb

image

更多内容,欢迎关注 https://dwz.cn/r4lCXEuL

.

相关文章
|
2月前
|
数据采集 存储 XML
Python爬虫:深入探索1688关键词接口获取之道
在数字化经济中,数据尤其在电商领域的价值日益凸显。1688作为中国领先的B2B平台,其关键词接口对商家至关重要。本文介绍如何通过Python爬虫技术,合法合规地获取1688关键词接口,助力商家洞察市场趋势,优化营销策略。
|
1天前
|
数据采集 存储 数据挖掘
深入剖析 Python 爬虫:淘宝商品详情数据抓取
深入剖析 Python 爬虫:淘宝商品详情数据抓取
|
4天前
|
存储 数据采集 数据库
Python爬虫实战:股票分时数据抓取与存储
Python爬虫实战:股票分时数据抓取与存储
|
30天前
|
数据采集 JSON 数据格式
Python爬虫:京东商品评论内容
京东商品评论接口为商家和消费者提供了重要工具。商家可分析评论优化产品,消费者则依赖评论做出购买决策。该接口通过HTTP请求获取评论内容、时间、点赞数等数据,支持分页和筛选好评、中评、差评。Python示例代码展示了如何调用接口并处理返回的JSON数据。应用场景包括产品优化、消费者决策辅助、市场竞争分析及舆情监测。
|
1月前
|
数据采集 供应链 API
Python爬虫与1688图片搜索API接口:深度解析与显著收益
在电子商务领域,数据是驱动业务决策的核心。阿里巴巴旗下的1688平台作为全球领先的B2B市场,提供了丰富的API接口,特别是图片搜索API(`item_search_img`),允许开发者通过上传图片搜索相似商品。本文介绍如何结合Python爬虫技术高效利用该接口,提升搜索效率和用户体验,助力企业实现自动化商品搜索、库存管理优化、竞品监控与定价策略调整等,显著提高运营效率和市场竞争力。
89 3
|
2月前
|
数据采集 存储 缓存
如何使用缓存技术提升Python爬虫效率
如何使用缓存技术提升Python爬虫效率
|
2月前
|
数据采集 JSON API
如何利用Python爬虫淘宝商品详情高级版(item_get_pro)API接口及返回值解析说明
本文介绍了如何利用Python爬虫技术调用淘宝商品详情高级版API接口(item_get_pro),获取商品的详细信息,包括标题、价格、销量等。文章涵盖了环境准备、API权限申请、请求构建和返回值解析等内容,强调了数据获取的合规性和安全性。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
2月前
|
数据采集 存储 API
利用Python爬虫获取1688关键词接口全攻略
本文介绍如何使用Python爬虫技术合法合规地获取1688关键词接口数据,包括环境准备、注册1688开发者账号、获取Access Token、构建请求URL、发送API请求、解析HTML及数据处理存储等步骤,强调遵守法律法规和合理使用爬虫技术的重要性。
|
2月前
|
数据采集 JSON 开发者
Python爬虫京东商品详情数据接口
京东商品详情数据接口(JD.item_get)提供商品标题、价格、品牌、规格、图片等详细信息,适用于电商数据分析、竞品分析等。开发者需先注册账号、创建应用并申请接口权限,使用时需遵循相关规则,注意数据更新频率和错误处理。示例代码展示了如何通过 Python 调用此接口并处理返回的 JSON 数据。

热门文章

最新文章

推荐镜像

更多