python为什么浮点计算不准确?

简介: 用户经常对这样的结果感到惊讶: >>> 1.2 - 1.0 0.19999999999999996 并且认为这是 Python中的一个 bug。其实不是这样。这与 Python 关系不大,而与底层平台如何处理浮点数字关系更大。

用户经常对这样的结果感到惊讶:

>>> 1.2 - 1.0
0.19999999999999996

并且认为这是 Python中的一个 bug。其实不是这样。这与 Python 关系不大,而与底层平台如何处理浮点数字关系更大。

CPython 中的 float 类型使用C语言的 double 类型进行存储。 float 对象的值是以固定的精度(通常为 53 位)存储的二进制浮点数,由于 Python 使用 C 操作,而后者依赖于处理器中的硬件实现来执行浮点运算。 这意味着就浮点运算而言,Python 的行为类似于许多流行的语言,包括 C 和 Java。

许多可以轻松地用十进制表示的数字不能用二进制浮点表示。例如,之后:

>>> x = 1.2

为 x 存储的值是与十进制的值 1.2 (非常接近) 的近似值,但不完全等于它。 在典型的机器上,实际存储的值是:

1.0011001100110011001100110011001100110011001100110011 (binary)
确切地说:

1.1999999999999999555910790149937383830547332763671875 (decimal)
典型的 53 位精度为 Python 浮点数提供了 15-16 位小数的精度。

要获得更完整的解释,请参阅 Python 教程中的 浮点算术 一章。

相关文章
|
11月前
|
Python
【10月更文挑战第10天】「Mac上学Python 19」小学奥数篇5 - 圆和矩形的面积计算
本篇将通过 Python 和 Cangjie 双语解决简单的几何问题:计算圆的面积和矩形的面积。通过这道题,学生将掌握如何使用公式解决几何问题,并学会用编程实现数学公式。
358 60
|
5月前
|
Python
Python中Cp、Cpk、Pp、Ppk的计算与应用
总的来说,Cp、Cpk、Pp、Ppk是衡量过程能力的重要工具,它们可以帮助我们了解和改进生产过程,提高产品质量。
392 13
|
11月前
|
Python
Datetime模块应用:Python计算上周周几对应的日期
Datetime模块应用:Python计算上周周几对应的日期
300 1
|
5月前
|
存储 人工智能 算法
使用Python计算从位置x到y的最少步数
本文通过Python代码结合广度优先搜索(BFS)算法,解决从起点到终点的最少步数问题。以二维网格为例,机器人只能上下左右移动,目标是最短路径。BFS按层遍历,确保首次到达终点即为最短路径。文中提供完整Python实现,包括队列与访问标记数组的使用,并输出示例结果。此外,还探讨了双向BFS、Dijkstra及A*算法等优化方法,帮助读者深入理解最短路径问题及其高效解决方案。
134 0
|
9月前
|
Python
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
Python中的函数是**一种命名的代码块,用于执行特定任务或计算
163 18
|
9月前
|
Python
使用Python计算字符串的SHA-256散列值
使用Python计算字符串的SHA-256散列值
258 7
|
10月前
|
机器学习/深度学习 算法 编译器
Python程序到计算图一键转化,详解清华开源深度学习编译器MagPy
【10月更文挑战第26天】MagPy是一款由清华大学研发的开源深度学习编译器,可将Python程序一键转化为计算图,简化模型构建和优化过程。它支持多种深度学习框架,具备自动化、灵活性、优化性能好和易于扩展等特点,适用于模型构建、迁移、部署及教学研究。尽管MagPy具有诸多优势,但在算子支持、优化策略等方面仍面临挑战。
323 3
|
11月前
|
机器学习/深度学习 移动开发 Python
【10月更文挑战第11天】「Mac上学Python 22」小学奥数篇8 - 排列组合计算
本篇将通过 Python 和 Cangjie 双语讲解如何计算排列与组合。这道题目旨在让学生学会使用排列组合公式解决实际问题,并加深对数学知识和编程逻辑的理解。
176 4
|
11月前
|
Python
【10月更文挑战第15天】「Mac上学Python 26」小学奥数篇12 - 图形变换与坐标计算
本篇将通过 Python 和 Cangjie 双语实现图形变换与坐标计算。这个题目帮助学生理解平面几何中的旋转、平移和对称变换,并学会用编程实现坐标变化。
222 1
|
11月前
|
机器学习/深度学习 并行计算 大数据
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧2
【Python篇】NumPy完整指南(上篇):掌握数组、矩阵与高效计算的核心技巧
319 10

热门文章

最新文章

推荐镜像

更多