Android中(Service )服务的最佳实践——后台执行的定时任务

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010046908/article/details/47727367             Android中的定时任务一般有两种实现方式,一种是使用Java API里提供的Timer类,一种是使用Android的Alarm机制。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/u010046908/article/details/47727367
            Android中的定时任务一般有两种实现方式,一种是使用Java API里提供的Timer类,一种是使用Android的Alarm机制。这两种方式在多数情况下都能实现类似的效果,但Timer有一个明显的短板,它并不太适用于那些需要长期在后台运行的定时任务。我们都知道,为了能让电池更加耐用,每种手机都会有自己的休眠策略,Android手机就会在长时间不操作的情况下自动让CPU进入到睡眠状态,这就有可能导致Timer中的定时任务无法正常运行。而Alarm机制则不存在这种情况,它具有唤醒CPU的功能,即可以保证每次需要执行定时任务的时候CPU都能正常工作。需要注意,这里唤醒CPU和唤醒屏幕完全不是同一个概念,千万不要产生混淆。 

         那么首先我们来看一下Alarm机制的用法吧,其实并不复杂,主要就是借助了AlarmManager类来实现的。这个类和NotificationManager有点类似,都是通过调用Context的getSystemService()方法来获取实例的,只是这里需要传入的参数是Context.ALARM_SERVICE。因此,获取一个AlarmManager的实例就可以写成:

     AlarmManager manager = (AlarmManager) getSystemService(Context.ALARM_SERVICE); 

接下来调用AlarmManager的set()方法就可以设置一个定时任务了,比如说想要设定一个任务在10秒钟后执行,就可以写成: 
  
   long triggerAtTime = SystemClock.elapsedRealtime() + 10 * 1000;
     manager.set(AlarmManager.ELAPSED_REALTIME_WAKEUP, triggerAtTime, pendingIntent); 

         上面的两行代码你不一定能看得明白,因为set()方法中需要传入的三个参数稍微有点复杂,下面我们就来仔细地分析一下。第一个参数是一个整型参数,用于指定AlarmManager的工作类型,有四种值可选,分别是ELAPSED_REALTIME、ELAPSED_REALTIME_WAKEUP、RTC和RTC_WAKEUP。其中ELAPSED_REALTIME表示让定时任务的触发时间从系统开机开始算起,但不会唤醒CPU。ELAPSED_REALTIME_WAKEUP同样表示让定时任务的触发时间从系统开机开始算起,但会唤醒CPU。RTC表示让定时任务的触发时间从1970年1月1日0点开始算起,但不会唤醒CPU。RTC_WAKEUP同样表示让定时任务的触发时间从1970年1月1日0点开始算起,但会唤醒CPU。使用SystemClock.elapsedRealtime()方法可以获取到系统开机至今所经历时间的毫秒数,使用System.currentTimeMillis()方法可以获取到1970年1月1日0点至今所经历时间的毫秒数。 
     然后看一下第二个参数,这个参数就好理解多了,就是定时任务触发的时间,以毫秒为单位。如果第一个参数使用的是ELAPSED_REALTIME或ELAPSED_REALTIME_WAKEUP,则这里传入开机至今的时间再加上延迟执行的时间。如果第一个参数使用的是RTC或RTC_WAKEUP,则这里传入1970年1月1日0点至今的时间再加上延迟执行的时间。

      第三个参数是一个PendingIntent,对于它你应该已经不会陌生了吧。这里我们一般会调用getBroadcast()方法来获取一个能够执行广播的PendingIntent。这样当定时任务被触发的时候,广播接收器的onReceive()方法就可以得到执行。 
了解了set()方法的每个参数之后,你应该能想到,设定一个任务在10秒钟后执行还可以写成: 
    

   long triggerAtTime = System.currentTimeMillis() + 10 * 1000; 
       manager.set(AlarmManager.RTC_WAKEUP, triggerAtTime, pendingIntent); 


好了,现在你已经掌握Alarm机制的基本用法,下面我们就来创建一个可以长期在后台执行定时任务的服务。创建一个ServiceBestPractice项目,然后新增一个LongRunningService类,代码如下所示:

 public class LongRunningService extends Service {  
 @Override 
 public IBinder onBind(Intent intent) {
   return null;
  } 
  @Override 
 public int onStartCommand(Intent intent, int flags, int startId) {
   new Thread(new Runnable() {    
  @Override  
  public void run() {  
 Log.d("LongRunningService", "executed at " + new Date(). toString()); 
   }   }).start(); 
  AlarmManager manager = (AlarmManager) getSystemService(ALARM_SERVICE); 
  int anHour = 60 * 60 * 1000;  // 这是一小时的毫秒数 
  long triggerAtTime = SystemClock.elapsedRealtime() + anHour;   
  Intent i = new Intent(this, AlarmReceiver.class); 
  PendingIntent pi = PendingIntent.getBroadcast(this, 0, i, 0);   
   manager.set(AlarmManager.ELAPSED_REALTIME_WAKEUP, triggerAtTime, pi);  
   return super.onStartCommand(intent, flags, startId); 
 } 
 }


我们在onStartCommand()方法里开启了一个子线程,然后在子线程里就可以执行具体的逻辑操作了。这里简单起见,只是打印了一下当前的时间。 
创建线程之后的代码就是我们刚刚讲解的Alarm机制的用法了,先是获取到了AlarmManager的实例,然后定义任务的触发时间为一小时后,再使用PendingIntent指定处理定时任务的广播接收器为AlarmReceiver,最后调用set()方法完成设定。 
显然,AlarmReceiver目前还不存在呢,所以下一步就是要新建一个AlarmReceiver类,并让它继承自BroadcastReceiver,代码如下所示: 

public class AlarmReceiver extends BroadcastReceiver {   
@Override 
 public void onReceive(Context context, Intent intent) { 
  Intent i = new Intent(context, LongRunningService.class);   
context.startService(i); 
 } 
 } 
onReceive()方法里的代码非常简单,就是构建出了一个Intent对象,然后去启动LongRunningService这个服务。那么这里为什么要这样写呢?其实在不知不觉中,这就已经将一个长期在后台定时运行的服务完成了。因为一旦启动LongRunningService,就会在onStartCommand()方法里设定一个定时任务,这样一小时后AlarmReceiver的onReceive()方法就将得到执行,然后我们在这里再次启动LongRunningService,这样就形成了一个永久的循环,保证LongRunningService可以每隔一小时就会启动一次,一个长期在后台定时运行的服务自然也就完成了。 

接下来的任务也很明确了,就是我们需要在打开程序的时候启动一次LongRunningService,之后LongRunningService就可以一直运行了。修改MainActivity中的代码,如下所示:

public class MainActivity extends Activity {  
 @Override 
 protected void onCreate(Bundle savedInstanceState) {  
 super.onCreate(savedInstanceState); 
  Intent intent = new Intent(this, LongRunningService.class);   
  startService(intent); 
 } 
 }

最后别忘了,我们所用到的服务和广播接收器都要在AndroidManifest.xml中注册才行,代码如下所示:

<manifest xmlns:android="http://schemas.android.com/apk/res/android"     package="com.example.servicebestpractice"     android:versionCode="1" 
    android:versionName="1.0" >  „„ 
    <application 
        android:allowBackup="true" 
        android:icon="@drawable/ic_launcher"        
     android:label="@string/app_name"         
    android:theme="@style/AppTheme" > 
        <activity 
            android:name="com.example.servicebestpractice.MainActivity"            
 android:label="@string/app_name" >            
 <intent-filter> 
                <action android:name="android.intent.action.MAIN" /> 
                <category android:name="android.intent.category.LAUNCHER" />        
     </intent-filter>        
 </activity> 
        <service android:name=".LongRunningService" >   </service> 
        <receiver android:name=".AlarmReceiver" >   </receiver>   
 </application> 
</manifest> 


现在就可以来运行一下程序了。虽然你不会在界面上看到任何有用的信息,但实际上LongRunningService已经在后台悄悄地运行起来了。为了能够验证一下运行结果,我将手机闲置了几个小时,然后观察LogCat中的打印日志,。

    

    longRuntimingService  extecuted at sat Nov 30 16:03:07  GTM+00:00 2014
    longRuntimingService  extecuted at sat Nov 30 17:03:07  GTM+00:00 2014
    longRuntimingService  extecuted at sat Nov 30 18:03:07  GTM+00:00 2014
   longRuntimingService  extecuted at sat Nov 30 19:03:07  GTM+00:00 2014

  可以看到,LongRunningService果然如我们所愿地运行着,每隔一小时都会打印一条日志。这样,当你真正需要去执行某个定时任务的时候,只需要将打印日志替换成具体的任务逻辑就行了。 
另外需要注意的是,从Android 4.4版本开始,Alarm任务的触发时间将会变得不准确,有可能会延迟一段时间后任务才能得到执行。这并不是个bug,而是系统在耗电性方面进行的优化。系统会自动检测目前有多少Alarm任务存在,然后将触发时间将近的几个任务放在一起执行,这就可以大幅度地减少CPU被唤醒的次数,从而有效延长电池的使用时间。 
当然,如果你要求Alarm任务的执行时间必须准备无误,Android仍然提供了解决方案。使用AlarmManager的setExact()方法来替代set()方法,就可以保证任务准时执行了。 
好了,最佳实践部分到此结束。逻辑操作了。这里简单起见,只是打印了一下当前的时间。 




相关文章
|
10天前
|
JavaScript 前端开发 Android开发
让Vite+Vue3项目在Android端离线打开(不需要起服务)
让Vite+Vue3项目在Android端离线打开(不需要起服务)
|
19天前
|
调度 Android开发 UED
Android经典实战之Android 14前台服务适配
本文介绍了在Android 14中适配前台服务的关键步骤与最佳实践,包括指定服务类型、请求权限、优化用户体验及使用WorkManager等。通过遵循这些指南,确保应用在新系统上顺畅运行并提升用户体验。
35 6
|
1月前
|
数据处理 开发工具 数据安全/隐私保护
Android平台RTMP推送|轻量级RTSP服务|GB28181接入之文字、png图片水印的精进之路
本文探讨了Android平台上推流模块中添加文字与PNG水印的技术演进。自2015年起,为了满足应急指挥及安防领域的需求,逐步发展出三代水印技术:第一代为静态文字与图像水印;第二代实现了动态更新水印内容的能力,例如实时位置与时间信息;至第三代,则优化了数据传输效率,直接使用Bitmap对象传递水印数据至JNI层,减少了内存拷贝次数。这些迭代不仅提升了用户体验和技术效率,也体现了开发者追求极致与不断创新的精神。
|
1月前
|
数据采集 编解码 开发工具
Android平台实现无纸化同屏并推送RTMP或轻量级RTSP服务(毫秒级延迟)
一个好的无纸化同屏系统,需要考虑的有整体组网、分辨率、码率、实时延迟、音视频同步和连续性等各个指标,做容易,做好难
|
1月前
|
监控 开发工具 Android开发
Android平台实现RTSP拉流转发至轻量级RTSP服务
为满足Android平台上从外部RTSP摄像头拉流并提供轻量级RTSP服务的需求,利用大牛直播SDK实现了相关功能。SDK支持开始与停止拉流、音频视频数据回调处理及RTSP服务的启动与发布等操作。拉流仅需将未解码数据回调,对性能影响小。音频和视频数据经由特定接口传递给发布端进行处理。此外,SDK还提供了获取RTSP会话数量的功能。此方案适用于监控和巡检等低延迟应用场景,并支持二次水印添加等功能。
|
1月前
|
编解码 API 开发工具
Android平台轻量级RTSP服务模块二次封装版调用说明
本文介绍了Android平台上轻量级RTSP服务模块的二次封装实践,旨在简化开发流程,让开发者能更专注于业务逻辑。通过`LibPublisherWrapper`类提供的API,可在应用中轻松初始化RTSP服务、配置视频参数(如分辨率、编码类型)、启动与停止RTSP服务及流发布,并获取RTSP会话数量。此外,还展示了如何处理音频和视频数据的采集与推送。最后,文章提供了从启动服务到销毁资源的完整示例,帮助开发者快速集成实时流媒体功能。
|
1月前
|
编解码 开发工具 Android开发
Android平台轻量级RTSP服务模块技术接入说明
为满足内网无纸化/电子教室等内网超低延迟需求,避免让用户配置单独的服务器,大牛直播SDK在推送端发布了轻量级RTSP服务SDK。 轻量级RTSP服务解决的核心痛点是避免用户或者开发者单独部署RTSP或者RTMP服务,实现本地的音视频数据(如摄像头、麦克风),编码后,汇聚到内置RTSP服务,对外提供可供拉流的RTSP URL,轻量级RTSP服务,适用于内网环境下,对并发要求不高的场景,支持H.264/H.265,支持RTSP鉴权、单播、组播模式,考虑到单个服务承载能力,我们支持同时创建多个RTSP服务,并支持获取当前RTSP服务会话连接数。
|
Java Android开发
Android Priority Job Queue (Job Manager):后台线程任务结果传回前台(三)
 Android Priority Job Queue (Job Manager):后台线程任务结果传回前台(三) 在附录文章4,5的基础上改造MainActivity.java和MyJob.java,改造后的代码,将使MyJob在后台完成线程任务后返回数据给前台。
989 0
|
6天前
|
Android开发 开发者 Kotlin
探索安卓开发中的新特性
【9月更文挑战第14天】本文将引导你深入理解安卓开发领域的一些最新特性,并为你提供实用的代码示例。无论你是初学者还是经验丰富的开发者,这篇文章都会给你带来新的启示和灵感。让我们一起探索吧!
|
1天前
|
Android开发 开发者
安卓开发中的自定义视图:从入门到精通
【9月更文挑战第19天】在安卓开发的广阔天地中,自定义视图是一块充满魔力的土地。它不仅仅是代码的堆砌,更是艺术与科技的完美结合。通过掌握自定义视图,开发者能够打破常规,创造出独一无二的用户界面。本文将带你走进自定义视图的世界,从基础概念到实战应用,一步步展示如何用代码绘出心中的蓝图。无论你是初学者还是有经验的开发者,这篇文章都将为你打开一扇通往创意和效率的大门。让我们一起探索自定义视图的秘密,将你的应用打造成一件艺术品吧!
18 10