洛谷 P2341 BZOJ 1051 [HAOI2006]受欢迎的牛

简介: 题目描述 每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶 牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果A喜 欢B,B喜欢C,那么A也喜欢C。

题目描述

每头奶牛都梦想成为牛棚里的明星。被所有奶牛喜欢的奶牛就是一头明星奶牛。所有奶

牛都是自恋狂,每头奶牛总是喜欢自己的。奶牛之间的“喜欢”是可以传递的——如果A喜

欢B,B喜欢C,那么A也喜欢C。牛栏里共有N 头奶牛,给定一些奶牛之间的爱慕关系,请你

算出有多少头奶牛可以当明星。

输入输出格式

输入格式:

 

 第一行:两个用空格分开的整数:N和M

 第二行到第M + 1行:每行两个用空格分开的整数:A和B,表示A喜欢B

 

输出格式:

 

 第一行:单独一个整数,表示明星奶牛的数量

 

输入输出样例

输入样例#1:
3 3
1 2
2 1
2 3
输出样例#1:
1

说明

只有 3 号奶牛可以做明星

【数据范围】

10%的数据N<=20, M<=50

30%的数据N<=1000,M<=20000

70%的数据N<=5000,M<=50000

100%的数据N<=10000,M<=50000

 

解题思路

  tarjan找到强连通分量,然后缩点,统计缩了之后每个强连通分量的出度,如果只有一个出度为零的强连通分量,答案就是这个强连通分量里点的个数;如果出度为零的强连通分量不止一个,那么答案就为0。

  记得Neil做这题的时候曾经疑惑过——如果缩点后得到的图还是成环咋办?那么所有强连通分量出度都不为零了,答案应该为0,但事实上应该所有奶牛都受欢迎了……原来这个算法正确性是这么保证的——tarjan算法有一个性质:求出的强连通分量一定是极大强连通分量,所以缩出来的点肯定不会成环。

源代码

#include<cstdio>
#include<algorithm>

int n,m;

struct edge{
    int u,v;
}b[100010];

struct Edge{
    int nxt,to;
}e[100010];
int head[100010]={0},cnt=1;
void add(int u,int v)
{
    e[cnt]={head[u],v};
    head[u]=cnt++;
}

int id[100010]={0},index=0;
int num[100010]={0};

int dfn[100010]={0},low[100010]={0},dfs_time=0;
int stack[100010]={0},top=0;
bool instack[100010]={0};
void tarjan(int u)
{
    low[u]=dfn[u]=++dfs_time;
    stack[top++]=u;
    instack[u]=1;
    for(int i=head[u];i;i=e[i].nxt)
    {
        int v=e[i].to;
        if(!dfn[v])
            tarjan(v),low[u]=std::min(low[v],low[u]);
        else if(instack[v])
            low[u]=std::min(low[v],low[u]);
    }
    if(dfn[u]==low[u])
    {
        index++;
        int v;
        do{
            v=stack[--top];
            stack[top]=0;
            id[v]=index,instack[v]=0;
            num[index]++;
        }while(v!=u);
    }
}

int out[100010]={0};

int main()
{
    //freopen("cow.in","r",stdin);
    //freopen("cow.out","w",stdout);
    scanf("%d%d",&n,&m);
    for(int i=1,u,v;i<=m;i++)
    {
        scanf("%d%d",&u,&v);
        add(u,v);
        b[i]={u,v};
    }
    for(int i=1;i<=n;i++)
        if(!dfn[i])
            tarjan(i);
    for(int i=1;i<=m;i++)
        if(id[b[i].u]!=id[b[i].v])
            out[id[b[i].u]]++;

    
    int ans=0;
    for(int i=1;i<=index;i++)
        if(!out[i])
        {
            if(ans)
            {
                printf("0\n");
                return 0;
            }
            else ans=num[i];
        }
    printf("%d\n",ans);
    return 0;
}

 

目录
相关文章
|
5月前
一文搞懂:【bzoj】3436小K的农场
一文搞懂:【bzoj】3436小K的农场
24 0
【洛谷】独自一人听歌写题
【洛谷】独自一人听歌写题
73 0
|
机器学习/深度学习 算法 搜索推荐
洛谷每日三题之第六天
洛谷每日三题之第六天
|
机器学习/深度学习
洛谷每日三题之第五天
洛谷每日三题之第五天
|
机器学习/深度学习 算法 IDE
洛谷每日三题之第四天
洛谷每日三题之第四天
|
测试技术
HDU-4508,湫湫系列故事——减肥记I(完全背包)
HDU-4508,湫湫系列故事——减肥记I(完全背包)
洛谷 P2155 BZOJ 2186 codevs 2301 [SDOI2008]沙拉公主的困惑
题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞票。房地产第一大户沙拉公主决定预测一下大富翁国现在所有真钞票的数量。
1064 0
|
人工智能 BI
洛谷 P3183 BZOJ 4562 [HAOI2016]食物链
题目描述 如图所示为某生态系统的食物网示意图,据图回答第1小题现在给你n个物种和m条能量流动关系,求其中的食物链条数。物种的名称为从1到n编号M条能量流动关系形如a1 b1a2 b2a3 b3......am-1 bm-1am bm其中ai bi表示能量从物种ai流向物种bi,注意单独的一种孤立生物不算一条食物链 输入输出格式 输入格式:   第一行两个整数n和m,接下来m行每行两个整数ai bi描述m条能量流动关系。
1041 0
|
定位技术
洛谷 P2805 BZOJ 1565 植物大战僵尸
题目描述 Plants vs. Zombies(PVZ)是最近十分风靡的一款小游戏。Plants(植物)和Zombies(僵尸)是游戏的主角,其中Plants防守,而Zombies进攻。该款游戏包含多种不同的挑战系列,比如Protect Your Brain、Bowling等等。
920 0
|
人工智能 BI JavaScript
BZOJ 1061: [Noi2008]志愿者招募【单纯形裸题】
1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 4813  Solved: 2877[Submit][Status][Discuss] Description   申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管。
1131 0