MySQL · 特性分析 · drop table的优化

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,高可用系列 2核4GB
简介:

背景

系统为了加速对象的访问,通常都会增加一层缓存,以缓解下一层IO的瓶颈,OS的page cache和数据库的buffer pool都基于此。

但对象的删除,如果同步清理对象的缓存的话,不仅大大增加了延时,同时可能因为缓存过大导致IO blooding。所以针对缓存的清理,都会采用lazy drop的优化,下面我们就来对比下percona和官方针对drop table的lazy drop 优化。

假设使用innodb_file_per_table为表创建独立的tablespace,在业务处理过程中,有删除表的动作,会发现drop table操作不仅仅持续比较长,而且在删除过程中,实例的QPS也有所降低,主要是因为在清理buffer pool过程中,持有buffer pool的mutex导致,percona server在5.1版本开始引入 lazy drop table来消除drop table过程中带来的影响,但也并没有完全消除,MySQL 官方在5.5.23以后也引入了 lazy drop table 来优化drop 操作,下面我们就来对比一下这两种方式的差异。

值得一提的是:在日常的运维中,drop的操作并非核心需求,我们也都建议DBA在 off-peak 时间去做这样的操作。

同步模式

在讨论lazy模式之前,我们先看看MySQL在5.5.23版本之前的处理方式即同步模式:
当要drop table的时候,会在整个操作过程中持有buffer pool的mutex,然后扫描两次LRU链表,把属于这个table的page失效掉,buffer pool中page的个数越多,持有mutex时间就会越长,对在线业务的影响也就越明显。

简短看下核心处理代码:

fil_delete_tablespace
buf_LRU_invalidate_tablespace(
     ulint     id)     /*!< in: space id */
{
     ulint     i;()
     for (i = 0; i < srv_buf_pool_instances; i++) {
          buf_pool_t*     buf_pool;

          buf_pool = buf_pool_from_array(i);
          buf_LRU_drop_page_hash_for_tablespace(buf_pool, id);
          buf_LRU_invalidate_tablespace_buf_pool_instance(buf_pool, id);
     }
}
  1. buf_LRU_drop_page_hash_for_tablespace会扫描一次LRU list,需要从adaptive hash中删除对要删除的表的page的引用;
  2. buf_LRU_invalidate_tablespace_buf_pool_instance会扫描一次LRU list:

    如果是dirty block,需要从flush list remove掉,然后从page hash中删除,最后从LRU list中删除。
    

可以看到,这种同步清理掉内存结构的操作,在业务高峰期,对系统的吞吐能力会产生不小的波动。

Percona lazy模式

percona实现了一个lazy drop table模式,使用参数控制:

mysql> show global variables like '%lazy%';
+------------------------+-------+
| Variable_name          | Value |
+------------------------+-------+
| innodb_lazy_drop_table | 0     |
+------------------------+-------+

其处理drop table的过程如下:

  1. 持有buffer pool的lru list mutex锁;
  2. 开始扫描LRU list中的page;

    1. 如果这个page属于要删除的table的,就设置一个flag,表示这个page所在的表正在被删除
  3. 释放lru list mutex锁;
  4. 持有一个adaptive hash index的shared latch;
  5. 开始扫描buffer pool中的block;
  6. 如果这个page被AHI索引;

    1. 释放AHI 锁
    2. 持有page的exclusive lock
    3. 删除AHI中索引这个page的entries
    4. 释放page锁
    5. 持有AHI的shared lock进行下一个page的判断

相比较同步模式,Percona的lazy drop table在扫描lru list过程中,只set了一个flag,随后在lru正常的淘汰过程中或者flush dirty block的时候如果碰到这中block,直接就做删除处理了,这也就是lazy的核心。

其核心代码如下:

buf_LRU_mark_space_was_deleted(
     ulint     id)     /*!< in: space id */
{
     ulint     i;

/* 这一部分代码就是持有lru链表mutex,进行第一步,第二步操作。*/
     for (i = 0; i < srv_buf_pool_instances; i++) {
          mutex_enter(&buf_pool->LRU_list_mutex);
          while (bpage != NULL) {
               if (buf_page_get_space(bpage) == id)
                    bpage->space_was_being_deleted = TRUE;
          }
          mutex_exit(&buf_pool->LRU_list_mutex);

/* 这里扫描的是buf_pool中的chunk,也就是启动的时候,根据buffer pool的大小预分配好的blocks,不能更改,
   所以并不需要持有buffer pool mutex,或者lru list mutex。
*/
          btr_search_s_lock_all();
          chunk = buf_pool->chunks;
          for (j = buf_pool->n_chunks; j--; chunk++) {
               buf_block_t*     block     = chunk->blocks;
               for (k = chunk->size; k--; block++) {
                    if (buf_block_get_state(block)
                        != BUF_BLOCK_FILE_PAGE
                        || !block->index
                        || buf_page_get_space(&block->page) != id) {
                         continue;
                    }
/* 这里把AHI的锁释放掉了,但在btr_search_drop_page_hash_index中会持有AHI的lock对AHI结构进行变更。*/
                    btr_search_s_unlock_all();
                    rw_lock_x_lock(&block->lock);
                    btr_search_drop_page_hash_index(block, NULL);
                    rw_lock_x_unlock(&block->lock);

                    btr_search_s_lock_all();
               }
          }
          btr_search_s_unlock_all();
     }
}

MySQL lazy模式

在MySQL 5.5.23以后的版本,也实现了一个lazy drop table的方式,和percona的方式有所区别,下面来看一下具体的过程:

  1. 持有buffer pool mutex
  2. 持有buffer pool中的flush list mutex
  3. 开始扫描flush list;

    1. 如果dirty page属于drop table,那么就直接从flush list中remove掉;
    2. 如果删除的page个数超过了#define BUF_LRU_DROP_SEARCH_SIZE 1024 这个数目的话,释放buffer pool mutexflush list mutex,释放cpu资源;

      • 释放flush list mutex
      • 释放buffer pool mutex
      • 强制通过pthread_yield进行一次OS context switch,释放剩余的cpu时间片;
    3. 重新持有buffer pool mutex
    4. 重新持有flush list mutext
  4. 释放flush list mutex
  5. 释放buffer pool mutex

相比较percona的lazy方式,这里扫描的是dirty block,在LRU list中进行淘汰的时候,就不再判断当前fil_space是否存在的问题了,因为不牵涉到写入。

这里边有两个相关的bug,bug#51325bug#64284,有兴趣可以参考一下。

其核心的代码如下:

buf_LRU_flush_or_remove_pages(id, BUF_REMOVE_FLUSH_NO_WRITE, 0);

buf_pool_mutex_enter(buf_pool);

err = buf_flush_or_remove_pages(buf_pool, id, flush, trx);
......
buf_pool_mutex_exit(buf_pool);

/* BUF_REMOVE_FLUSH_NO_WRITE:意思表示,只对dirty block进行remove操作,不做写入。

对比

从上面的percona和oracle的MySQL版本比较来看,percona是持有了LRU list mutexAHI lock,而MySQL官方版本是持有了buffer pool mutexflush list mutex,从锁的保护范围来看,buffer pool mutex直观上瓶颈会比较明显,但具体还要跟表的大小、dirty block的比例来看,如果dirty block比较少的话,官方版本并不扫描LRU list,所以可能持有的时间并不会太久。

Percona的开发人员还针对这两个不同版本进行了Benchmarks, 大家可以看下他们测试出来的结果:

这个图是 MySQL 官方版本测试在系统压力下,进行频繁drop table的系统抖动:
picture_1

这个图是 Percona 版本测试在系统压力下,进行频繁drop table的系统抖动:
picture_2

但对于这样的测试,小编想说,哪个DBA/开发人员这么变态,要这么频繁的drop table -_-||

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
7月前
|
存储 关系型数据库 MySQL
在阿里云的AnalyticDB MySQL版中使用CREATE TABLE语句来创建内表
在阿里云的AnalyticDB MySQL版中使用CREATE TABLE语句来创建内表【1月更文挑战第16天】【1月更文挑战第78篇】
365 3
|
7月前
|
SQL 分布式计算 Java
实时数仓 Hologres产品使用合集之ologres holostudio为什么不支持max_pt('table')取最大分区这个方法
实时数仓Hologres是阿里云推出的一款高性能、实时分析的数据库服务,专为大数据分析和复杂查询场景设计。使用Hologres,企业能够打破传统数据仓库的延迟瓶颈,实现数据到决策的无缝衔接,加速业务创新和响应速度。以下是Hologres产品的一些典型使用场景合集。
|
7月前
|
SQL HIVE
数仓面试重灾区之-Generic User-defined Table Generating Function(UDTF)
数仓面试重灾区之-Generic User-defined Table Generating Function(UDTF)
44 0
|
SQL 关系型数据库 OLAP
AnalyticDB for PostgreSQL 6.0 新特性解析:Recursive CTE (Common Table Expressions)
Recursive CTE (Common Table Expressions) 能够实现SQL的递归查询功能,一般用于处理逻辑上为层次化或树状结构的数据(如查询组织结构、物料清单等),方便对该类数据进行多级递归查询。
|
2月前
|
人工智能 自然语言处理 关系型数据库
阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成
近日,阿里云云原生数据仓库 AnalyticDB PostgreSQL 版已完成和开源LLMOps平台Dify官方集成。
|
2月前
|
人工智能 分布式计算 数据管理
阿里云位居 IDC MarketScape 中国实时湖仓评估领导者类别
国际数据公司( IDC )首次发布了《IDC MarketScape: 中国实时湖仓市场 2024 年厂商评估》,阿里云在首次报告发布即位居领导者类别。
|
5月前
|
数据采集 运维 Cloud Native
Flink+Paimon在阿里云大数据云原生运维数仓的实践
构建实时云原生运维数仓以提升大数据集群的运维能力,采用 Flink+Paimon 方案,解决资源审计、拓扑及趋势分析需求。
18515 54
Flink+Paimon在阿里云大数据云原生运维数仓的实践
|
2月前
|
SQL 分布式计算 数据挖掘
加速数据分析:阿里云Hologres在实时数仓中的应用实践
【10月更文挑战第9天】随着大数据技术的发展,企业对于数据处理和分析的需求日益增长。特别是在面对海量数据时,如何快速、准确地进行数据查询和分析成为了关键问题。阿里云Hologres作为一个高性能的实时交互式分析服务,为解决这些问题提供了强大的支持。本文将深入探讨Hologres的特点及其在实时数仓中的应用,并通过具体的代码示例来展示其实际应用。
193 0
|
3月前
|
存储 机器学习/深度学习 监控
阿里云 Hologres OLAP 解决方案评测
随着大数据时代的到来,企业面临着海量数据的挑战,如何高效地进行数据分析和决策变得尤为重要。阿里云推出的 Hologres OLAP(在线分析处理)解决方案,旨在为用户提供快速、高效的数据分析能力。本文将深入探讨 Hologres OLAP 的特点、优势以及应用场景,并针对方案的技术细节、部署指导、代码示例和数据分析需求进行评测。
134 7
|
3月前
|
运维 数据挖掘 OLAP
阿里云Hologres:一站式轻量级OLAP分析平台的全面评测
在数据驱动决策的今天,企业对高效、灵活的数据分析平台的需求日益增长。阿里云的Hologres,作为一站式实时数仓引擎,提供了强大的OLAP(在线分析处理)分析能力。本文将对Hologres进行深入评测,探讨其在多源集成、性能、易用性以及成本效益方面的表现。
141 7

热门文章

最新文章