深度学习基础系列(一)| 一文看懂用kersa构建模型的各层含义(掌握输出尺寸和可训练参数数量的计算方法)

简介:       我们在学习成熟神经模型时,如VGG、Inception、Resnet等,往往面临的第一个问题便是这些模型的各层参数是如何设置的呢?另外,我们如果要设计自己的网路模型时,又该如何设置各层参数呢?如果模型参数设置出错的话,其实模型也往往不能运行了。

      我们在学习成熟神经模型时,如VGG、Inception、Resnet等,往往面临的第一个问题便是这些模型的各层参数是如何设置的呢?另外,我们如果要设计自己的网路模型时,又该如何设置各层参数呢?如果模型参数设置出错的话,其实模型也往往不能运行了。

  所以,我们需要首先了解模型各层的含义,比如输出尺寸和可训练参数数量。理解后,大家在设计自己的网路模型时,就可以先在纸上画出网络流程图,设置各参数,计算输出尺寸和可训练参数数量,最后就可以照此进行编码实现了。

  而在keras中,当我们构建模型或拿到一个成熟模型后,往往可以通过model.summary()来观察模型各层的信息。

  本文将通过一个简单的例子来进行说明。本例以keras官网的一个简单模型VGG-like模型为基础,稍加改动代码如下:


from tensorflow import keras
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv2D, MaxPool2D


(train_data, train_labels), (test_data, test_labels) = keras.datasets.mnist.load_data()
train_data = train_data.reshape(-1, 28, 28, 1)
print("train data type:{}, shape:{}, dim:{}".format(type(train_data), train_data.shape, train_data.ndim))


# 第一组
model = Sequential()
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='valid', activation='relu', input_shape=(28, 28, 1)))
model.add(Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), padding='valid', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))


# 第二组
model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='valid', activation='relu'))
model.add(Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), padding='valid', activation='relu'))
model.add(MaxPool2D(pool_size=(2, 2)))
model.add(Dropout(0.25))


# 第三组
model.add(Flatten())
model.add(Dense(units=256, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(units=10, activation='softmax'))

model.summary()


  本例的数据来源于mnist,这是尺寸为28*28,通道数为1,也即只有黑白两色的图片。其中卷积层的参数含义为:

  • filters:表示过滤器的数量,每一个过滤器都会与对应的输入层进行卷积操作;
  • kernel_size:表示过滤器的尺寸,一般为奇数值,如1,3,5,这里设置为3*3大小;
  • strides:表示步长,即每一次过滤器在图片上移动的步数;
  • padding:表示是否对图片边缘填充像素,一般有两个值可选,一是默认的valid,表示不填充像素,卷积后图片尺寸会变小;另一种是same,填充像素,使得输出尺寸和输入尺寸保持一致。

  如果选择valid,假设输入尺寸为n * n,过滤器的大小为f * f,步长为s,则其输出图片的尺寸公式为:[(n - f)/s + 1] * [(n -f)/s + 1)],若计算结果不为整数,则向下取整;

  如果选择same,假设输入尺寸为n * n,过滤器的大小为f * f,要填充的边缘像素宽度为p,则计算p的公式为:n + 2p -f  +1 = n, 最后得 p = (f -1) /2。

  运行上述例子,可以看到如下结果:


train data type:<class 'numpy.ndarray'>, shape:(60000, 28, 28, 1), dim:4
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
conv2d (Conv2D)              (None, 26, 26, 32)        320       
_________________________________________________________________
conv2d_1 (Conv2D)            (None, 24, 24, 32)        9248      
_________________________________________________________________
max_pooling2d (MaxPooling2D) (None, 12, 12, 32)        0         
_________________________________________________________________
dropout (Dropout)            (None, 12, 12, 32)        0         
_________________________________________________________________
conv2d_2 (Conv2D)            (None, 10, 10, 64)        18496     
_________________________________________________________________
conv2d_3 (Conv2D)            (None, 8, 8, 64)          36928     
_________________________________________________________________
max_pooling2d_1 (MaxPooling2 (None, 4, 4, 64)          0         
_________________________________________________________________
dropout_1 (Dropout)          (None, 4, 4, 64)          0         
_________________________________________________________________
flatten (Flatten)            (None, 1024)              0         
_________________________________________________________________
dense (Dense)                (None, 256)               262400    
_________________________________________________________________
dropout_2 (Dropout)          (None, 256)               0         
_________________________________________________________________
dense_1 (Dense)              (None, 10)                2570      
=================================================================
Total params: 329,962
Trainable params: 329,962
Non-trainable params: 0


  让我们解读下,首先mnist为输入数据,尺寸大小为 (60000, 28, 28, 1), 这是典型的NHWC结构,即(图片数量,宽度,高度,通道数);

  其次我们需要关注表格中的"output shape"输出尺寸,其遵循mnist一样的结构,只不过第一位往往是None,表示图片数待定,后三位则按照上述规则进行计算;

  最后关注的是"param"可训练参数数量,不同的模型层计算方法不一样:

  • 对于卷积层而言,假设过滤器尺寸为f * f, 过滤器数量为n, 若开启了bias,则bias数固定为1,输入图片的通道数为c,则param计算公式= (f * f * c + 1) * n;
  • 对于池化层、flatten、dropout操作而言,是不需要训练参数的,所以param为0;
  • 对于全连接层而言,假设输入的列向量大小为i,输出的列向量大小为o,若开启bias,则param计算公式为=i * o + o

  按照代码中划分的三组模型层次,其输出尺寸和可训练参数数量的计算方法可如下图所示:

  第一组:


     第二组:


     第三组:


       至此,模型各层的含义和相关计算方法已介绍完毕,希望此文能帮助大家更好地理解模型的构成和相关计算。

相关文章
|
10天前
|
机器学习/深度学习 数据可视化 TensorFlow
使用Python实现深度学习模型的分布式训练
使用Python实现深度学习模型的分布式训练
127 73
|
13天前
|
机器学习/深度学习 数据采集 供应链
使用Python实现智能食品消费需求分析的深度学习模型
使用Python实现智能食品消费需求分析的深度学习模型
59 21
|
14天前
|
机器学习/深度学习 数据采集 数据挖掘
使用Python实现智能食品消费模式预测的深度学习模型
使用Python实现智能食品消费模式预测的深度学习模型
39 2
|
17天前
|
机器学习/深度学习 传感器 数据采集
深度学习在故障检测中的应用:从理论到实践
深度学习在故障检测中的应用:从理论到实践
77 5
|
9天前
|
机器学习/深度学习 网络架构 计算机视觉
深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过研究卷积神经网络(CNN)的结构和原理,本文展示了深度学习如何提高图像识别的准确性和效率。同时,本文也讨论了数据不平衡、过拟合、计算资源限制等问题,并提出了相应的解决策略。
57 19
|
9天前
|
机器学习/深度学习 传感器 人工智能
探索深度学习在图像识别中的应用与挑战
【10月更文挑战第21天】 本文深入探讨了深度学习技术在图像识别领域的应用,并分析了当前面临的主要挑战。通过介绍卷积神经网络(CNN)的基本原理和架构设计,阐述了深度学习如何有效地从图像数据中提取特征,并在多个领域实现突破性进展。同时,文章也指出了训练深度模型时常见的过拟合问题、数据不平衡以及计算资源需求高等挑战,并提出了相应的解决策略。
53 7
|
20天前
|
机器学习/深度学习 自动驾驶 算法
深度学习在图像识别中的应用
本文将探讨深度学习技术在图像识别领域的应用。我们将介绍深度学习的基本原理,以及如何利用这些原理进行图像识别。我们将通过一个简单的代码示例来演示如何使用深度学习模型进行图像分类。最后,我们将讨论深度学习在图像识别领域的未来发展趋势和挑战。
|
20天前
|
机器学习/深度学习 数据采集 算法
深度学习在图像识别中的应用与挑战
本文探讨了深度学习技术在图像识别领域的应用,重点分析了卷积神经网络(CNN)的基本原理、优势以及面临的主要挑战。通过案例研究,展示了深度学习如何提高图像识别的准确性和效率,同时指出了数据质量、模型泛化能力和计算资源等关键因素对性能的影响。
|
20天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用及其面临的挑战。通过分析深度学习模型如卷积神经网络(CNN)的工作原理,我们揭示了这些模型如何有效地处理和识别图像数据。同时,文章也指出了当前深度学习在图像识别中遇到的一些主要问题,包括过拟合、数据集偏差和模型解释性等,为读者提供了对这一领域全面而深入的理解。
|
21天前
|
机器学习/深度学习 计算机视觉
深度学习在图像识别中的应用与挑战
本文深入探讨了深度学习技术在图像识别领域的应用,分析了当前主流的深度学习模型及其在图像识别中的优势和面临的挑战。通过具体案例分析,揭示了深度学习如何推动图像识别技术的边界,并讨论了未来可能的发展方向。
35 4