网络安全与机器学习(二):网络安全任务如何结合机器学习?

本文涉及的产品
云防火墙,500元 1000GB
简介: 网络安全遇见机器学习,会摩擦出怎样的火花呢?

安全任和机器学

让我们看看常见的网络安全任务和机器学习结合的机会,而不是查看ML任务并尝试将它们应用于网络安全。具体我们需要考虑三个维度(Why,What和How)。

第一个维度是目标或任务(例如,检测威胁,攻击预测等)。根据GartnerPPDR模型,所有安全任务可分为五类:

1.        预测

2.        预防

3.        检测

4.       

5.        监测

第二个维度是技术层和“什么”问题的答案(例如,在哪个级别监控问题),以下是此维度的图层列表:

1.        (网流量分析和入侵检测;

2.        端点(反件);

3.        应用程序(WAF或数据防火;

4.        户行为分析UBA;

5.        过程(反欺诈)

每个图层都有不同的子类别。例如,网络安全可以是有线、无线或云。请放心,至少在不久的将来,你不能将具有相同超参数的相同算法应用于两个区域。因为缺少数据和算法来找到对这三个区域都很友好的方法,因此可以将一个算法更改为不同的算法。

第三个维度是“如何”的问题(例如,如何检查特定区域的安全性):

1.        实时检测

2.        静态检测

3.        历史查看

例如,如果你要查看端点保护,查找入侵,则可以监视可执行文件的进程,执行静态二进制分析,分析此端点中的操作历史记录等。

有些任务应该从三个方面解决。有时,对于某些任务,某些维度中没有值。我们需要从其他维度来找到解决方法。这些通常很难详细介绍它们,所以我们关注最重要的维度-技术层。从这个角度看网络安全解决方案。

用于网护的机器学习

网络保护不是单一领域,而是一系列不同的解决方案,专注于以太网、无线、SCADA甚至SDN等虚拟网络等协议。

网络保护是指众所周知的入侵检测系统(IDS)解决方案。网络安全中的ML意味着称为网络流量分析(NTA)的新解决方案,旨在深入分析每层的所有流量并检测攻击和异常。

ML如何在这里提供帮助?有一些例子:

1.        归预测数据包参数并与正常数据包行比

2.        识别不同类别的网,例如描和欺

3.        类数据用于分析;

你可以在学术研究论文中找到至少10篇描述不同方法的论文。

更多资源:

1.        入侵检测机器学

2.        用于时间序列异常检测短期记忆

3.        基于规则提取的高效入侵检测异常检测框架

4.        异常检测术综

5.        和深入侵检测:分调查

6.        深度数据包:一种利用深度学习进行加密流量分的新方法

7.        入侵检测的性能比及机器学Snort中的

8.        入侵检测机器学算法

9.        基于LSTM的一集体异常检测

10.     基于递归的网流量异常检测

11.     计算机网络流量异常检测的序列聚合规则

12.     IDS所有方法的大集合

用于端点保的机器学

新一代的反病毒是端点检测和响应,建议最好学习可执行文件或进程行为中的特征。

请记住,如果你在端点层处理应用机器学习,你的解决方案可能会有所不同,具体取决于端点类型(例如工作站、服务器、容器、云端、移动设备、PLC、物联网设备)。每种端点都有自己的细节,常见任务类别:

1.        预测程的下一个系统调用,并将其与实际过行比

2.        将程序划分为恶件、间谍软件和勒索件等类别的分

3.        聚类在安全件网关上件保(例如将法律文件附件与异常分开);

关于端点保护和恶意软件的学术论文特别受欢迎。这里有一些论文:

1.        侵蚀整个EXE进行恶意软件检测

2.        深度学:非域家的件分

3.        TESSERACT:消除跨空时间件分中的实验偏差

用于应用程序安全的机器学习

在app安全性中使用ML?用于静态和动态的WAF或代码分析?不得不提醒你一下,应用程序安全性可能有所不同。因为他们有很多应用场景:比如说有Web应用程序、数据库、ERP系统、SaaS应用程序、微服务等。在不久的将来,几乎不可能建立一个通用的ML模型来有效地处理所有威胁。但是,你可以尝试解决某些任务。

以下是使用机器学习实现应用程序安全性的示例:

1.        检测HTTP请求中的异常(例如,XXESSRF以及auth旁路);

2.        用于检测已知型的攻(如注入(SQLiXSSRCE等))的分;

3.        集中用检测DDOS和大模利用。

更多资源:

1.        自适应检测Web中的查询

2.        恶意脚本的神经分类:使用JavaScriptVBScript进行的研究

3.        URLNet:通深度学URL表示以URL检测

用于用的机器学

这类任务需求始于安全信息和事件管理(SIEM)。如果配置正确,SIEM能够解决许多任务,包括用户行为搜索和ML。然后,UEBA解决方案宣称SIEM无法处理新的,更高级的攻击类型和持续的行为更改。

如果从用户层面考虑威胁,市场已经接受了需要特殊解决方案的观点。

但是,即使最高级的UEBA工具也不包括与不同用户行为相关的所有内容。(域用户、应用程序用户、SaaS用户、社交网络、信使和其他应该监控的帐户)。

与常见攻击的恶意软件检测和训练分类器的可能性不同,用户行为属于无监督学习问题之一。通常,没有标记数据集以及要查找的内容。因此,为所有类型的用户创建通用算法的任务在用户行为区域中是棘手的。以下是公司在ML的帮助下解决的任务:

1.        检测操作中的异常(例如,在异常时间;

2.        以将不同用分析;

3.        以分离用户组检测异常

更多资源:

  • 使用展隔离算法检测异常用为;

用于进程行为的机器学习

进程区域是最后但并非最不重要的,在处理它时,有必要知道一个大致的业务流程,以便找到异常值。注意不同行业的业务流程可能有很大差异。你可以在银行和零售系统或制造厂中查找欺诈行为。两者完全不同,找到它们的不同需要很多领域知识。机器学习特征工程(将数据表示为算法的方式)对于实现结果至关重要。同样,特征在所有进程中都不同。

通常,进程行为也有任务示例:

1.        归:预测下一个用检测信用卡欺等异常;

2.        类:检测已知型的欺;

3.        类:较业务流程和检测异常

更多资源:

机器学安全

如果你想了解有关网络安全中机器学习的更多信息,可以阅读以下书籍:

1.        Cylance的网安全AI2017-对网络安全ML的基短,而且有很好的实际例子。

2.        O'reilly的机器学和安全2018-迄今止关于个主的最佳籍,但很少关于深度的例子,大多是一般的ML

3.        Packt的渗透测试机器学2018-不像前一个那么优秀,但有很多的深度学方法。

4.        恶意软件数据科学:攻击检测和归因2018-标题中可以看出,这本主要关注件。它刚刚在撰写本文时发布,所以到目前止我无法出任何反。但我相信,这对端点保护团队的每个人来都是必的。 

结论

如果你想保护你的系统,机器学习绝对不是一个银弹解决方案。毫无疑问,可解释性存在许多问题(特别是对于深度学习算法)。另一方面,随着数据量的增加和网络安全专家数量的减少,ML是唯一的补救措施。它现在有效,很快就会执行。现在最好开始做这些。因为请记住,黑客也开始在攻击中使用ML。

本文由阿里云云栖社区组织翻译。

文章原标题《machine-learning-for-cybersecurity-101》

作者:Alexander Polyakov 译者:乌拉乌拉,审校:。

文章为简译,更为详细的内容,请查看原文

相关文章
|
1天前
|
机器学习/深度学习 数据采集 人工智能
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
GeneralDyG 是南洋理工大学推出的通用动态图异常检测方法,通过时间 ego-graph 采样、图神经网络和时间感知 Transformer 模块,有效应对数据多样性、动态特征捕捉和计算成本高等挑战。
29 18
GeneralDyG:南洋理工推出通用动态图异常检测方法,支持社交网络、电商和网络安全
|
5天前
|
机器学习/深度学习 边缘计算 运维
机器学习在网络安全中的防护:智能化的安全屏障
机器学习在网络安全中的防护:智能化的安全屏障
34 15
|
14天前
|
人工智能 搜索推荐 决策智能
不靠更复杂的策略,仅凭和大模型训练对齐,零样本零经验单LLM调用,成为网络任务智能体新SOTA
近期研究通过调整网络智能体的观察和动作空间,使其与大型语言模型(LLM)的能力对齐,显著提升了基于LLM的网络智能体性能。AgentOccam智能体在WebArena基准上超越了先前方法,成功率提升26.6个点(+161%)。该研究强调了与LLM训练目标一致的重要性,为网络任务自动化提供了新思路,但也指出其性能受限于LLM能力及任务复杂度。论文链接:https://arxiv.org/abs/2410.13825。
47 12
|
1月前
|
存储 SQL 安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将介绍网络安全的重要性,分析常见的网络安全漏洞及其危害,探讨加密技术在保障网络安全中的作用,并强调提高安全意识的必要性。通过本文的学习,读者将了解网络安全的基本概念和应对策略,提升个人和组织的网络安全防护能力。
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
随着互联网的普及,网络安全问题日益突出。本文将从网络安全漏洞、加密技术和安全意识三个方面进行探讨,旨在提高读者对网络安全的认识和防范能力。通过分析常见的网络安全漏洞,介绍加密技术的基本原理和应用,以及强调安全意识的重要性,帮助读者更好地保护自己的网络信息安全。
49 10
|
1月前
|
SQL 安全 网络安全
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们生活中不可或缺的一部分。本文将介绍网络安全漏洞、加密技术和安全意识等方面的内容,并提供一些实用的代码示例。通过阅读本文,您将了解到如何保护自己的网络安全,以及如何提高自己的信息安全意识。
61 10
|
1月前
|
存储 监控 安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
本文将探讨云计算与网络安全之间的关系,以及它们在云服务、网络安全和信息安全等技术领域中的融合与挑战。我们将分析云计算的优势和风险,以及如何通过网络安全措施来保护数据和应用程序。我们还将讨论如何确保云服务的可用性和可靠性,以及如何处理网络攻击和数据泄露等问题。最后,我们将提供一些关于如何在云计算环境中实现网络安全的建议和最佳实践。
|
1月前
|
安全 网络安全 数据安全/隐私保护
网络安全与信息安全:关于网络安全漏洞、加密技术、安全意识等方面的知识分享
在数字化时代,网络安全和信息安全已成为我们日常生活中不可或缺的一部分。本文将深入探讨网络安全漏洞、加密技术和安全意识等方面的问题,并提供一些实用的建议和解决方案。我们将通过分析网络攻击的常见形式,揭示网络安全的脆弱性,并介绍如何利用加密技术来保护数据。此外,我们还将强调提高个人和企业的安全意识的重要性,以应对日益复杂的网络威胁。无论你是普通用户还是IT专业人士,这篇文章都将为你提供有价值的见解和指导。
|
1月前
|
存储 安全 网络安全
云计算与网络安全:云服务、网络安全、信息安全等技术领域的融合与挑战
随着云计算技术的飞速发展,越来越多的企业和个人开始使用云服务。然而,云计算的广泛应用也带来了一系列网络安全问题。本文将从云服务、网络安全、信息安全等方面探讨云计算与网络安全的关系,分析当前面临的挑战,并提出相应的解决方案。
65 3
|
2月前
|
存储 安全 网络安全
云计算与网络安全:探索云服务、网络安全和信息安全的交汇点
在数字化时代,云计算已成为企业和个人存储、处理数据的关键技术。然而,随着云服务的普及,网络安全问题也日益凸显。本文将深入探讨云计算与网络安全的关系,分析云服务中的安全挑战,并提出相应的解决方案。同时,我们还将介绍一些实用的代码示例,帮助读者更好地理解和应对网络安全问题。