兄弟连区块链教程区块链背后的信息安全2DES、3DES加密算法原理一

本文涉及的产品
密钥管理服务KMS,1000个密钥,100个凭据,1个月
简介:

  区块链教程区块链背后的信息安全2DES、3DES加密算法原理一,2018年下半年,区块链行业正逐渐褪去发展之初的浮躁、回归理性,表面上看相关人才需求与身价似乎正在回落。但事实上,正是初期泡沫的渐退,让人们更多的关注点放在了区块链真正的技术之上。

DES、3DES加密算法原理及其GO语言实现

DES加密算法,为对称加密算法中的一种。70年代初由IBM研发,后1977年被美国国家标准局采纳为数据加密标准,即DES全称的由来:Data Encryption Standard。
对称加密算法,是相对于非对称加密算法而言的。两者区别在于,对称加密在加密和解密时使用同一密钥,而非对称加密在加密和解密时使用不同的密钥,即公钥和私钥。
常见的DES、3DES、AES均为对称加密算法,而RSA、椭圆曲线加密算法,均为非对称加密算法。

DES是以64比特的明文为一个单位来进行加密的,超过64比特的数据,要求按固定的64比特的大小分组,分组有很多模式,后续单独总结,暂时先介绍DES加密算法。
DES使用的密钥长度为64比特,但由于每隔7个比特设置一个奇偶校验位,因此其密钥长度实际为56比特。奇偶校验为最简单的错误检测码,即根据一组二进制代码中1的个数是奇数或偶数来检测错误。

Feistel网络

DES的基本结构,由IBM公司的Horst Feistel设计,因此称Feistel网络。
在Feistel网络中,加密的每个步骤称为轮,经过初始置换后的64位明文,进行了16轮Feistel轮的加密过程,最后经过终结置换后形成最终的64位密文。

64比特明文被分为左、右两部分处理,右侧数据和子密钥经过轮函数f生成用于加密左侧数据的比特序列,与左侧数据异或运算,运算结果输出为加密后的左侧,右侧数据则直接输出为右侧。
其中子密钥为本轮加密使用的密钥,每次Feistel均使用不同的子密钥。子密钥的计算,以及轮函数的细节,稍后下文介绍。
由于一次Feistel轮并不会加密右侧,因此需要将上一轮输出后的左右两侧对调后,重复Feistel轮的过程,DES算法共计进行16次Feistel轮,最后一轮输出后左右两侧无需对调。

DES加密和解密的过程一致,均使用Feistel网络实现,区别仅在于解密时,密文作为输入,并逆序使用子密钥。

go标准库中DES算法实现如下:

func cryptBlock(subkeys []uint64, dst, src []byte, decrypt bool) {
    b := binary.BigEndian.Uint64(src)
    //初始置换
    b = permuteInitialBlock(b)
    left, right := uint32(b>>32), uint32(b)

    var subkey uint64
    //共计16次feistel轮
    for i := 0; i < 16; i++ {
        //加密和解密使用子密钥顺序相反
        if decrypt {
            subkey = subkeys[15-i]
        } else {
            subkey = subkeys[i]
        }
        //feistel轮函数
        left, right = right, left^feistel(right, subkey)
    }
    //最后一轮无需对调
    preOutput := (uint64(right) << 32) | uint64(left)
    //终结置换
    binary.BigEndian.PutUint64(dst, permuteFinalBlock(preOutput))
}
//代码位置src/crypto/des/block.go

初始置换和终结置换

进入Feistel轮之前,64位明文需做一次初始置换。Feistel轮结束后,需做一次反向操作,即终结置换。
初始置换和终结置换目的是为加强硬件的破解难度而加的。

附go标准库中使用的初始置换表和终结置换表如下:

//初始置换表
var initialPermutation = [64]byte{
    6, 14, 22, 30, 38, 46, 54, 62,
    4, 12, 20, 28, 36, 44, 52, 60,
    2, 10, 18, 26, 34, 42, 50, 58,
    0, 8, 16, 24, 32, 40, 48, 56,
    7, 15, 23, 31, 39, 47, 55, 63,
    5, 13, 21, 29, 37, 45, 53, 61,
    3, 11, 19, 27, 35, 43, 51, 59,
    1, 9, 17, 25, 33, 41, 49, 57,
}

//终结置换表
var finalPermutation = [64]byte{
    24, 56, 16, 48, 8, 40, 0, 32,
    25, 57, 17, 49, 9, 41, 1, 33,
    26, 58, 18, 50, 10, 42, 2, 34,
    27, 59, 19, 51, 11, 43, 3, 35,
    28, 60, 20, 52, 12, 44, 4, 36,
    29, 61, 21, 53, 13, 45, 5, 37,
    30, 62, 22, 54, 14, 46, 6, 38,
    31, 63, 23, 55, 15, 47, 7, 39,
}
//代码位置src/crypto/des/const.go

子密钥的计算

DES初始密钥为64位,其中8位用于奇偶校验,实际密钥为56位,64位初始密钥经过PC-1密钥置换后,生成56位串。
经PC-1置换后56位的串,分为左右两部分,各28位,分别左移1位,形成C0和D0,C0和D0合并成56位,经PC-2置换后生成48位子密钥K0。
C0和D0分别左移1位,形成C1和D1,C1和D1合并成56位,经PC-2置换后生成子密钥K1。
以此类推,直至生成子密钥K15。但注意每轮循环左移的位数,有如下规定:

var ksRotations = [16]uint8{1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1}
//代码位置src/crypto/des/const.go

go标准库中DES子密钥计算的代码如下:

func (c *desCipher) generateSubkeys(keyBytes []byte) {
    key := binary.BigEndian.Uint64(keyBytes)
    //PC-1密钥置换,生成56位串
    permutedKey := permuteBlock(key, permutedChoice1[:])

    //56位串分左右两部分,各28位,ksRotate为依次循环左移1位
    leftRotations := ksRotate(uint32(permutedKey >> 28))
    rightRotations := ksRotate(uint32(permutedKey<<4) >> 4)

    //生成子密钥
    for i := 0; i < 16; i++ {
        //合并左右两部分,之后PC-2置换
        pc2Input := uint64(leftRotations[i])<<28 | uint64(rightRotations[i])
        c.subkeys[i] = permuteBlock(pc2Input, permutedChoice2[:])
    }
}
//代码位置src/crypto/des/block.go

附go标准库中使用的PC-1置换表和PC-2置换表:

//PC-1置换表
var permutedChoice1 = [56]byte{
    7, 15, 23, 31, 39, 47, 55, 63,
    6, 14, 22, 30, 38, 46, 54, 62,
    5, 13, 21, 29, 37, 45, 53, 61,
    4, 12, 20, 28, 1, 9, 17, 25,
    33, 41, 49, 57, 2, 10, 18, 26,
    34, 42, 50, 58, 3, 11, 19, 27,
    35, 43, 51, 59, 36, 44, 52, 60,
}

//PC-2置换表
var permutedChoice2 = [48]byte{
    42, 39, 45, 32, 55, 51, 53, 28,
    41, 50, 35, 46, 33, 37, 44, 52,
    30, 48, 40, 49, 29, 36, 43, 54,
    15, 4, 25, 19, 9, 1, 26, 16,
    5, 11, 23, 8, 12, 7, 17, 0,
    22, 3, 10, 14, 6, 20, 27, 24,
}
//代码位置src/crypto/des/const.go

未完待续感谢关注兄弟连区块链教程分享!

相关文章
|
15天前
|
机器学习/深度学习 算法 PyTorch
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
软演员-评论家算法(Soft Actor-Critic, SAC)是深度强化学习领域的重要进展,基于最大熵框架优化策略,在探索与利用之间实现动态平衡。SAC通过双Q网络设计和自适应温度参数,提升了训练稳定性和样本效率。本文详细解析了SAC的数学原理、网络架构及PyTorch实现,涵盖演员网络的动作采样与对数概率计算、评论家网络的Q值估计及其损失函数,并介绍了完整的SAC智能体实现流程。SAC在连续动作空间中表现出色,具有高样本效率和稳定的训练过程,适合实际应用场景。
63 7
深度强化学习中SAC算法:数学原理、网络架构及其PyTorch实现
|
23天前
|
算法 Java 数据库
理解CAS算法原理
CAS(Compare and Swap,比较并交换)是一种无锁算法,用于实现多线程环境下的原子操作。它通过比较内存中的值与预期值是否相同来决定是否进行更新。JDK 5引入了基于CAS的乐观锁机制,替代了传统的synchronized独占锁,提升了并发性能。然而,CAS存在ABA问题、循环时间长开销大和只能保证单个共享变量原子性等缺点。为解决这些问题,可以使用版本号机制、合并多个变量或引入pause指令优化CPU执行效率。CAS广泛应用于JDK的原子类中,如AtomicInteger.incrementAndGet(),利用底层Unsafe库实现高效的无锁自增操作。
理解CAS算法原理
|
23天前
|
安全 算法 网络协议
【网络原理】——图解HTTPS如何加密(通俗简单易懂)
HTTPS加密过程,明文,密文,密钥,对称加密,非对称加密,公钥和私钥,证书加密
|
2月前
|
存储 供应链 分布式数据库
深入理解区块链技术:原理、应用与挑战
本文旨在探讨区块链技术的基本原理、主要应用及其面临的挑战。通过分析区块链的分布式账本技术、加密算法和共识机制,我们揭示了其如何在无需中心化权威的情况下确保数据的不可篡改性和透明性。此外,文章还讨论了区块链在金融、供应链管理、智能合约等领域的应用案例,并指出了当前区块链技术面临的可扩展性、隐私保护和法律监管等挑战。通过对这些内容的深入分析,我们希望为读者提供一个全面而深入的区块链技术概览。
257 16
|
2月前
|
算法 容器
令牌桶算法原理及实现,图文详解
本文介绍令牌桶算法,一种常用的限流策略,通过恒定速率放入令牌,控制高并发场景下的流量,确保系统稳定运行。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
令牌桶算法原理及实现,图文详解
|
1月前
|
存储 供应链 算法
深入探索区块链技术:原理、应用与未来展望
本文将带你深入了解区块链技术的基本原理,探讨其在金融、供应链、医疗等多个领域的应用案例,并展望其未来的发展趋势。通过本文,你将对区块链技术有一个全面的认识,理解其背后的技术逻辑和应用场景。
|
1月前
|
存储 人工智能 缓存
【AI系统】布局转换原理与算法
数据布局转换技术通过优化内存中数据的排布,提升程序执行效率,特别是对于缓存性能的影响显著。本文介绍了数据在内存中的排布方式,包括内存对齐、大小端存储等概念,并详细探讨了张量数据在内存中的排布,如行优先与列优先排布,以及在深度学习中常见的NCHW与NHWC两种数据布局方式。这些布局方式的选择直接影响到程序的性能,尤其是在GPU和CPU上的表现。此外,还讨论了连续与非连续张量的概念及其对性能的影响。
64 3
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
负载均衡 算法 应用服务中间件
5大负载均衡算法及原理,图解易懂!
本文详细介绍负载均衡的5大核心算法:轮询、加权轮询、随机、最少连接和源地址散列,帮助你深入理解分布式架构中的关键技术。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
5大负载均衡算法及原理,图解易懂!
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
80 4

热门文章

最新文章