开篇
DelayedQueue是一个用来延时处理的队列,delayQueue其实就是在每次往优先级队列中添加元素,然后以元素的delay/过期值作为排序的因素,以此来达到先过期的元素会拍在队首,每次从队列里取出来都是最先要过期的元素
- 所谓延时处理就是说可以为队列中元素设定一个过期时间,
- 相关的操作受到这个设定时间的控制。
DelayQueue类图
DelayQueue类变量和构造函数
DelayQueue的类变量当中有两个核心变量值得考虑:
- DelayQueue的PriorityQueue表明DelayQueue内部使用PriorityQueue的最小堆保证有序
- E extends Delayed标明存入DelayQueue的变量必须实现Delayed接口,实现getDelay和compareTo接口。
public class DelayQueue<E extends Delayed> extends AbstractQueue<E>
implements BlockingQueue<E> {
// 相关的锁
private final transient ReentrantLock lock = new ReentrantLock();
private final PriorityQueue<E> q = new PriorityQueue<E>();
private Thread leader = null;
//基于锁的状态通知变量
private final Condition available = lock.newCondition();
public DelayQueue() {}
public DelayQueue(Collection<? extends E> c) {
this.addAll(c);
}
public interface Comparable<T> {
public int compareTo(T o);
}
public interface Delayed extends Comparable<Delayed> {
long getDelay(TimeUnit unit);
}
DelayQueue的add过程
DelayQueue的添加元素过程如下:
- 执行加锁操作
- 把元素添加到优先级队列中
- 查看元素是否为队首这个地方一直没看懂
- 如果是队首的话,设置leader为空并唤醒所有等待的队列,这个地方一直没看懂
- 释放锁
public boolean add(E e) {
return offer(e);
}
public boolean offer(E e) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
q.offer(e);
if (q.peek() == e) {
leader = null;
available.signal();
}
return true;
} finally {
lock.unlock();
}
}
public void put(E e) {
offer(e);
}
public boolean offer(E e, long timeout, TimeUnit unit) {
return offer(e);
}
DelayQueue的take过程
DelayQueue的获取元素过程如下:
- 执行加锁操作
- 取出优先级队列元素q的队首
- 如果元素q的队首/队列为空,阻塞请求
- 如果元素q的队首(first)不为空,获得这个元素的delay时间值
- 如果first的延迟delay时间值为0的话,说明该元素已经到了可以使用的时间,调用poll方法弹出该元素,跳出方法
- 如果first的延迟delay时间值不为0的话,释放元素first的引用,避免内存泄露
- 判断leader元素是否为空,不为空的话阻塞当前线程
- 如果leader元素为空的话,把当前线程赋值给leader元素,然后阻塞delay的时间,即等待队首到达可以出队的时间,在finally块中释放leader元素的引用
- 循环执行从1~8的步骤
- 如果leader为空并且优先级队列不为空的情况下(判断还有没有其他后续节点),调用signal通知其他的线程
- 执行解锁操作
public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
E first = q.peek();
if (first == null || first.getDelay(NANOSECONDS) > 0)
return null;
else
return q.poll();
} finally {
lock.unlock();
}
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E first = q.peek();
if (first == null)
available.await();
else {
long delay = first.getDelay(NANOSECONDS);
if (delay <= 0)
return q.poll();
first = null; // don't retain ref while waiting
if (leader != null)
available.await();
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
available.awaitNanos(delay);
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
try {
for (;;) {
E first = q.peek();
if (first == null) {
if (nanos <= 0)
return null;
else
nanos = available.awaitNanos(nanos);
} else {
long delay = first.getDelay(NANOSECONDS);
if (delay <= 0)
return q.poll();
if (nanos <= 0)
return null;
first = null; // don't retain ref while waiting
if (nanos < delay || leader != null)
nanos = available.awaitNanos(nanos);
else {
Thread thisThread = Thread.currentThread();
leader = thisThread;
try {
long timeLeft = available.awaitNanos(delay);
nanos -= delay - timeLeft;
} finally {
if (leader == thisThread)
leader = null;
}
}
}
}
} finally {
if (leader == null && q.peek() != null)
available.signal();
lock.unlock();
}
}
public E peek() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return q.peek();
} finally {
lock.unlock();
}
}
private E peekExpired() {
// assert lock.isHeldByCurrentThread();
E first = q.peek();
return (first == null || first.getDelay(NANOSECONDS) > 0) ?
null : first;
}