阿里P8架构师带你玩转数据库 “读写分离”

简介: 想用数据库“读写分离” 请先明白“读写分离”解决什么问题有一些技术同学可能对于“读写分离”了解不多,认为数据库的负载问题都可以使用“读写分离”来解决。这其实是一个非常大的误区,我们要用“读写分离”,首先应该明白“读写分离”是用来解决什么样的问题的,而不是仅仅会用这个技术。

想用数据库“读写分离” 请先明白“读写分离”解决什么问题

有一些技术同学可能对于“读写分离”了解不多,认为数据库的负载问题都可以使用“读写分离”来解决。

img_d67eb142b2b2bc63cc0151fce5f1b484.jpe

这其实是一个非常大的误区,我们要用“读写分离”,首先应该明白“读写分离”是用来解决什么样的问题的,而不是仅仅会用这个技术。

什么是读写分离?

其实就是将数据库分为了主从库,一个主库用于写数据,多个从库完成读数据的操作,主从库之间通过某种机制进行数据的同步,是一种常见的数据库架构。

一个组从同步集群,通常被称为是一个“分组”。

img_64d350354452dc6b4ba11bdff73c2b2d.jpe

数据库分组架构解决什么问题?

大多数互联网业务,往往读多写少,这时候,数据库的读会首先称为数据库的瓶颈,这时,如果我们希望能够线性的提升数据库的读性能,消除读写锁冲突从而提升数据库的写性能,那么就可以使用“分组架构”(读写分离架构)。

用一句话概括,读写分离是用来解决数据库的读性能瓶颈的。

img_92935b8c2e2151aeabfb58f459bae7c9.jpe

但是,不是任何读性能瓶颈都需要使用读写分离,我们还可以有其他解决方案。

在互联网的应用场景中,常常数据量大、并发量高、高可用要求高、一致性要求高,如果使用“读写分离”,就需要注意这些问题:

数据库连接池要进行区分,哪些是读连接池,哪个是写连接池,研发的难度会增加;

为了保证高可用,读连接池要能够实现故障自动转移;

主从的一致性问题需要考虑。

在这么多的问题需要考虑的情况下,如果我们仅仅是为了解决“数据库读的瓶颈问题”,为什么不选择使用缓存呢?

为什么用缓存

缓存,也是互联网中常常使用到的一种架构方式,同“读写分离”不同,读写分离是通过多个读库,分摊了数据库读的压力,而存储则是通过缓存的使用,减少了数据库读的压力。他们没有谁替代谁的说法,但是,如果在缓存的读写分离进行二选一时,还是应该首先考虑缓存。

img_058d7391853c02c3caa2b9d3ba1b9ffc.jpe

为什么呢?

缓存的使用成本要比从库少非常多;

缓存的开发比较容易,大部分的读操作都可以先去缓存,找不到的再渗透到数据库。

当然,如果我们已经运用了缓存,但是读依旧还是瓶颈时,就可以选择“读写分离”架构了。简单来说,我们可以将读写分离看做是缓存都解决不了时的一种解决方案。

当然,缓存也不是没有缺点的

对于缓存,我们必须要考虑的就是高可用,不然,如果缓存一旦挂了,所有的流量都同时聚集到了数据库上,那么数据库是肯定会挂掉的。

img_6e0c8a8c3efa804461c5571c46c42c8c.jpe

对于常见的数据库瓶颈是什么呢?

其实是数据容量的瓶颈。例如订单表,数据量只增不减,历史数据又必须要留存,非常容易成为性能的瓶颈,而要解决这样的数据库瓶颈问题,“读写分离”和缓存往往都不合适,最适合的是什么呢?

img_deb44a4653a50ee5563c62adadb57f6a.jpe

数据库水平切分

什么是数据库水平切分?

数据库水平切分,也是一种常见的数据库架构,是一种通过算法,将数据库进行分割的架构。一个水平切分集群中的每个数据库,通常称为一个“分片”。每一个分片中的数据没有重合,所有分片中的数据并集组成全部数据。

img_82aa0647adb58aebe6cf543ff58136a9.jpe

水平切分架构解决什么问题呢?

大部分的互联网业务,数据量都非常大,单库容量最容易成为瓶颈,当单库的容量成为了瓶颈,我们希望提高数据库的写性能,降低单库容量的话,就可以采用水平切分了。

而有少部分程序员,会没有分析数据库的性能瓶颈是什么,就贸贸然的使用“读写分离”,殊不知“水平切分”才是正道。

欢迎工作一到五年的Java工程师朋友们加入Java填坑之路:860113481

群内提供免费的Java架构学习资料(里面有高可用、高并发、高性能及分布式、Jvm性能调优、Spring源码,MyBatis,Netty,Redis,Kafka,Mysql,Zookeeper,Tomcat,Docker,Dubbo,Nginx等多个知识点的架构资料)合理利用自己每一分每一秒的时间来学习提升自己,不要再用"没有时间“来掩饰自己思想上的懒惰!趁年轻,使劲拼,给未来的自己一个交代!

相关文章
|
3月前
|
NoSQL 关系型数据库 MySQL
微服务架构下的数据库选择:MySQL、PostgreSQL 还是 NoSQL?
在微服务架构中,数据库的选择至关重要。不同类型的数据库适用于不同的需求和场景。在本文章中,我们将深入探讨传统的关系型数据库(如 MySQL 和 PostgreSQL)与现代 NoSQL 数据库的优劣势,并分析在微服务架构下的最佳实践。
|
3月前
|
设计模式 缓存 关系型数据库
探索微服务架构中的数据库设计挑战
微服务架构因其模块化和高扩展性被广泛应用于现代软件开发。然而,这种架构模式也带来了数据库设计上的独特挑战。本文探讨了在微服务架构中实现数据库设计时面临的问题,如数据一致性、服务间的数据共享和分布式事务处理。通过分析实际案例和提出解决方案,旨在为开发人员提供有效的数据库设计策略,以应对微服务架构下的复杂性。
|
3月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与最佳实践
在微服务架构中,数据库访问的效率直接影响到系统的性能和可扩展性。本文探讨了优化微服务架构中数据库访问的策略与最佳实践,包括数据分片、缓存策略、异步处理和服务间通信优化。通过具体的技术方案和实例分析,提供了一系列实用的建议,以帮助开发团队提升微服务系统的响应速度和稳定性。
|
1月前
|
存储 SQL Apache
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
Apache Doris 是一个基于 MPP 架构的高性能实时分析数据库,以其极高的速度和易用性著称。它支持高并发点查询和复杂分析场景,适用于报表分析、即席查询、数据仓库和数据湖查询加速等。最新发布的 2.0.2 版本在性能、稳定性和多租户支持方面有显著提升。社区活跃,已广泛应用于电商、广告、用户行为分析等领域。
Apache Doris 开源最顶级基于MPP架构的高性能实时分析数据库
|
1月前
|
缓存 关系型数据库 MySQL
高并发架构系列:数据库主从同步的 3 种方案
本文详解高并发场景下数据库主从同步的三种解决方案:数据主从同步、数据库半同步复制、数据库中间件同步和缓存记录写key同步,旨在帮助解决数据一致性问题。关注【mikechen的互联网架构】,10年+BAT架构经验倾囊相授。
高并发架构系列:数据库主从同步的 3 种方案
|
1月前
|
存储 NoSQL 分布式数据库
微服务架构下的数据库设计与优化策略####
本文深入探讨了在微服务架构下,如何进行高效的数据库设计与优化,以确保系统的可扩展性、低延迟与高并发处理能力。不同于传统单一数据库模式,微服务架构要求更细粒度的服务划分,这对数据库设计提出了新的挑战。本文将从数据库分片、复制、事务管理及性能调优等方面阐述最佳实践,旨在为开发者提供一套系统性的解决方案框架。 ####
|
1月前
|
消息中间件 数据库 云计算
微服务架构下的数据库事务管理策略####
在微服务架构中,传统的单体应用被拆分为多个独立的服务单元,每个服务维护自己的数据库实例。这种设计提高了系统的可扩展性和灵活性,但同时也带来了分布式环境下事务管理的复杂性。本文探讨了微服务架构下数据库事务的挑战,并深入分析了几种主流的事务管理策略,包括Saga模式、两阶段提交(2PC)以及基于消息的最终一致性方案,旨在为开发者提供一套适应不同业务场景的事务处理框架。 ####
|
1月前
|
设计模式 存储 缓存
微服务架构下的数据库设计策略
本文探讨了在微服务架构中进行数据库设计时,如何平衡数据的一致性、独立性与系统整体性能之间的关系。文章首先介绍了微服务架构的基本概念及其对数据库设计的影响,随后深入分析了三种主流的数据库设计模式——集中式、去中心化和混合模式,并结合实际案例讨论了它们的适用场景与优缺点。此外,还提出了一系列最佳实践建议,旨在帮助开发者更好地应对微服务环境下的数据管理挑战。
|
3月前
|
存储 关系型数据库 MySQL
【阿里规约】阿里开发手册解读——数据库和ORM篇
从命名规范、建表规范、查询规范、索引规范、操作规范等角度出发,详细阐述MySQL数据库使用过程中所需要遵循的各种规范。
【阿里规约】阿里开发手册解读——数据库和ORM篇
|
3月前
|
消息中间件 缓存 监控
优化微服务架构中的数据库访问:策略与实践
随着微服务架构的普及,如何高效管理和优化数据库访问成为了关键挑战。本文探讨了在微服务环境中优化数据库访问的策略,包括数据库分片、缓存机制、异步处理等技术手段。通过深入分析实际案例和最佳实践,本文旨在为开发者提供实际可行的解决方案,以提升系统性能和可扩展性。