题意:给出一条长n的绳子,则有很多长为L的均分方法,找出一个L的集合,集合内元素两两不互素,并且要求元素最多,然后求和。
很容易看出来,有多少个素因子就有多少个元素,再把求出次幂求和就行,我的模板超时。。网上找了模板。
#include <cstdio> #include <cstring> #include <cstdlib> #include <map> using namespace std; typedef __int64 ll; ll gcd(ll a,ll b) { return (b==0)?a:gcd(b,a%b); } ll Mulmod(ll a,ll b,ll n) { ll exp = a%n, res = 0; while(b) { if(b&1) { res += exp; if(res>n) res -= n; } exp <<= 1; if(exp>n) exp -= n; b>>=1; } return res; } ll exp_mod(ll a,ll b,ll c) { ll k = 1; while(b) { if(b&1) k = Mulmod(k,a,c); a = Mulmod(a,a,c); b>>=1; } return k; } bool Miller_Rabbin(ll n, ll times) { if(n==2)return 1; if(n<2||!(n&1))return 0; ll a, u=n-1, x, y; int t=0; while(u%2==0) { t++; u/=2; } srand(100); for(int i=0; i<times; i++) { a = rand() % (n-1) + 1; x = exp_mod(a, u, n); for(int j=0; j<t; j++) { y = Mulmod(x, x, n); if ( y == 1 && x != 1 && x != n-1 ) return false; //must not x = y; } if( y!=1) return false; } return true; } ll Pollard_Rho(ll n,ll c) { ll x,y,d,i=1,k=2; y = x = rand() % (n-1) + 1; while(1) { i++; x = (Mulmod(x,x,n) + c)%n; d = gcd((x-y+n)%n,n); if(d>1&&d<n) return d; if(x==y) return n; if(i==k) { k<<=1; y = x; } } } ll factor[200],cnt; void Find_factor(ll n,ll c) { if(n==1) return; if(Miller_Rabbin(n,6)) { factor[cnt++] = n; return; } ll p = n; ll k = c; while(p>=n) p = Pollard_Rho(p,c--); Find_factor(p,k); Find_factor(n/p,k); } ll a_b(ll a,ll b) { ll ans = 1; for(ll i=0; i<b; i++) ans*=a; return ans; } int main() { int t; scanf("%d",&t); ll n; while(t--) { scanf("%I64d",&n); cnt = 0; Find_factor(n,120); map<ll,int>m0; for(int i=0; i<cnt; i++) { m0[factor[i]]++; } map<ll,int>::iterator iter; int size = m0.size(); if(size==1) { printf("%d %I64d\n",size,n/factor[0]); continue; } ll sum = 0; for(iter=m0.begin(); iter!=m0.end(); iter++) sum+=a_b(iter->first,iter->second); printf("%d %I64d\n",size,sum); } return 0; }