python数据清洗excel

简介: python清洗excel的数据还是很简单的这里就列举例子说一下这是原始数据,这里要处理的是地区和薪水两个字段。清洗前数据import xlrdimport codecsimport redef get_salary(sal...

python清洗excel的数据还是很简单的
这里就列举例子说一下
这是原始数据,这里要处理的是地区和薪水两个字段。


img_a074d628935a23dd5eaa19ac51670814.png
清洗前数据
import xlrd
import codecs
import re

def get_salary(salary):
    # 利用正则表达式提取月薪,把待遇规范成千/月的形式
    # 返回最低工资,最高工资的形式
    if '-' in salary:  # 针对1-2万/月或者10-20万/年的情况,包含-
        low_salary = re.findall(re.compile('(\d*\.?\d+)'), salary)[0]
        high_salary = re.findall(re.compile('(\d?\.?\d+)'), salary)[1]
        if u'万' in salary and u'年' in salary:  # 单位统一成千/月的形式
            low_salary = float(low_salary) / 12 * 10
            high_salary = float(high_salary) / 12 * 10
        elif u'万' in salary and u'月' in salary:
            low_salary = float(low_salary) * 10
            high_salary = float(high_salary) * 10
    else:  # 针对20万以上/年和100元/天这种情况,不包含-,取最低工资,没有最高工资
        low_salary = re.findall(re.compile('(\d*\.?\d+)'), salary)[0]
        high_salary = ""
        if u'万' in salary and u'年' in salary:  # 单位统一成千/月的形式
            low_salary = float(low_salary) / 12 * 10
        elif u'万' in salary and u'月' in salary:
            low_salary = float(low_salary) * 10
        elif u'元' in salary and u'天' in salary:
            low_salary = float(low_salary) / 1000 * 21  # 每月工作日21天
    return low_salary, high_salary


def open_xlsx(file):
    # 加载Excel数据,获得工作表和行数
    data = xlrd.open_workbook(file) #读取工作表名称
    table0 = data.sheet_by_name('51') #读取 当前sheet表
    nrows = table0.nrows # 获取行数
    return table0, nrows


def main():

    table, nrows = open_xlsx('512.xlsx') # 调用打开excel的函数
    print('一共有{}行数据,开始清洗数据'.format(nrows))
    for i in range(1, nrows):
        job = table.row_values(i)[0]
        company = table.row_values(i)[1]
        companytype = table.row_values(i)[2]
        area = table.row_values(i)[3][:2]  # 地区取到城市,把区域去掉
        if area:
            area_list.append(area)
        experience = table.row_values(i)[4]
        degree = table.row_values(i)[5]
        salary = table.row_values(i)[6]
        if salary:  # 如果待遇这栏不为空,计算最低最高待遇
            getsalary = get_salary(salary)
            low_salary = getsalary[0]
            high_salary = getsalary[1]
        else:
            low_salary = high_salary = ""
        print('正在写入第{}条,最低工资是{}k,最高工资是{}k'.format(i, low_salary, high_salary))
        output = ('{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n').format(job, company, companytype, area,
                                                                                   experience,degree, low_salary, high_salary
                                                                                  )
        f = codecs.open('51jobanaly.xls', 'a+')
        f.write(output)
        f.close()


if __name__ == '__main__':
    main()

主要把薪资处理成以千/月为单位。保留城市。
处理后的数据:


img_59e648680a0be9195f823d8149140e62.png
处理后的数据
目录
相关文章
|
2月前
|
数据采集 Web App开发 数据可视化
Python零基础爬取东方财富网股票行情数据指南
东方财富网数据稳定、反爬宽松,适合爬虫入门。本文详解使用Python抓取股票行情数据,涵盖请求发送、HTML解析、动态加载处理、代理IP切换及数据可视化,助你快速掌握金融数据爬取技能。
1339 1
|
2月前
|
Java 数据挖掘 数据处理
(Pandas)Python做数据处理必选框架之一!(一):介绍Pandas中的两个数据结构;刨析Series:如何访问数据;数据去重、取众数、总和、标准差、方差、平均值等;判断缺失值、获取索引...
Pandas 是一个开源的数据分析和数据处理库,它是基于 Python 编程语言的。 Pandas 提供了易于使用的数据结构和数据分析工具,特别适用于处理结构化数据,如表格型数据(类似于Excel表格)。 Pandas 是数据科学和分析领域中常用的工具之一,它使得用户能够轻松地从各种数据源中导入数据,并对数据进行高效的操作和分析。 Pandas 主要引入了两种新的数据结构:Series 和 DataFrame。
427 0
|
2月前
|
JSON 算法 API
Python采集淘宝商品评论API接口及JSON数据返回全程指南
Python采集淘宝商品评论API接口及JSON数据返回全程指南
|
2月前
|
JSON API 数据安全/隐私保护
Python采集淘宝拍立淘按图搜索API接口及JSON数据返回全流程指南
通过以上流程,可实现淘宝拍立淘按图搜索的完整调用链路,并获取结构化的JSON商品数据,支撑电商比价、智能推荐等业务场景。
|
4月前
|
机器学习/深度学习 新能源 调度
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
电力系统短期负荷预测(Python代码+数据+详细文章讲解)
373 1
|
4月前
|
缓存 API 网络架构
淘宝item_search_similar - 搜索相似的商品API接口,用python返回数据
淘宝联盟开放平台中,可通过“物料优选接口”(taobao.tbk.dg.optimus.material)实现“搜索相似商品”功能。该接口支持根据商品 ID 获取相似推荐商品,并返回商品信息、价格、优惠等数据,适用于商品推荐、比价等场景。本文提供基于 Python 的实现示例,包含接口调用、数据解析及结果展示。使用时需配置淘宝联盟的 appkey、appsecret 和 adzone_id,并注意接口调用频率限制和使用规范。
|
3月前
|
存储 监控 API
Python实战:跨平台电商数据聚合系统的技术实现
本文介绍如何通过标准化API调用协议,实现淘宝、京东、拼多多等电商平台的商品数据自动化采集、清洗与存储。内容涵盖技术架构设计、Python代码示例及高阶应用(如价格监控系统),提供可直接落地的技术方案,帮助开发者解决多平台数据同步难题。
|
3月前
|
存储 JSON 算法
Python集合:高效处理无序唯一数据的利器
Python集合是一种高效的数据结构,具备自动去重、快速成员检测和无序性等特点,适用于数据去重、集合运算和性能优化等场景。本文通过实例详解其用法与技巧。
139 0
|
5月前
|
存储 Web App开发 前端开发
Python + Requests库爬取动态Ajax分页数据
Python + Requests库爬取动态Ajax分页数据
|
2月前
|
人工智能 Java Linux
Python高效实现Excel转PDF:无Office依赖的轻量化方案
本文介绍无Office依赖的Python方案,利用Spire.XLS、python-office、Aspose.Cells等库实现Excel与PDF高效互转。支持跨平台部署、批量处理、格式精准控制,适用于服务器环境及自动化办公场景,提升转换效率与系统稳定性。
355 7

推荐镜像

更多