python数据清洗excel

简介: python清洗excel的数据还是很简单的这里就列举例子说一下这是原始数据,这里要处理的是地区和薪水两个字段。清洗前数据import xlrdimport codecsimport redef get_salary(sal...

python清洗excel的数据还是很简单的
这里就列举例子说一下
这是原始数据,这里要处理的是地区和薪水两个字段。


img_a074d628935a23dd5eaa19ac51670814.png
清洗前数据
import xlrd
import codecs
import re

def get_salary(salary):
    # 利用正则表达式提取月薪,把待遇规范成千/月的形式
    # 返回最低工资,最高工资的形式
    if '-' in salary:  # 针对1-2万/月或者10-20万/年的情况,包含-
        low_salary = re.findall(re.compile('(\d*\.?\d+)'), salary)[0]
        high_salary = re.findall(re.compile('(\d?\.?\d+)'), salary)[1]
        if u'万' in salary and u'年' in salary:  # 单位统一成千/月的形式
            low_salary = float(low_salary) / 12 * 10
            high_salary = float(high_salary) / 12 * 10
        elif u'万' in salary and u'月' in salary:
            low_salary = float(low_salary) * 10
            high_salary = float(high_salary) * 10
    else:  # 针对20万以上/年和100元/天这种情况,不包含-,取最低工资,没有最高工资
        low_salary = re.findall(re.compile('(\d*\.?\d+)'), salary)[0]
        high_salary = ""
        if u'万' in salary and u'年' in salary:  # 单位统一成千/月的形式
            low_salary = float(low_salary) / 12 * 10
        elif u'万' in salary and u'月' in salary:
            low_salary = float(low_salary) * 10
        elif u'元' in salary and u'天' in salary:
            low_salary = float(low_salary) / 1000 * 21  # 每月工作日21天
    return low_salary, high_salary


def open_xlsx(file):
    # 加载Excel数据,获得工作表和行数
    data = xlrd.open_workbook(file) #读取工作表名称
    table0 = data.sheet_by_name('51') #读取 当前sheet表
    nrows = table0.nrows # 获取行数
    return table0, nrows


def main():

    table, nrows = open_xlsx('512.xlsx') # 调用打开excel的函数
    print('一共有{}行数据,开始清洗数据'.format(nrows))
    for i in range(1, nrows):
        job = table.row_values(i)[0]
        company = table.row_values(i)[1]
        companytype = table.row_values(i)[2]
        area = table.row_values(i)[3][:2]  # 地区取到城市,把区域去掉
        if area:
            area_list.append(area)
        experience = table.row_values(i)[4]
        degree = table.row_values(i)[5]
        salary = table.row_values(i)[6]
        if salary:  # 如果待遇这栏不为空,计算最低最高待遇
            getsalary = get_salary(salary)
            low_salary = getsalary[0]
            high_salary = getsalary[1]
        else:
            low_salary = high_salary = ""
        print('正在写入第{}条,最低工资是{}k,最高工资是{}k'.format(i, low_salary, high_salary))
        output = ('{}\t{}\t{}\t{}\t{}\t{}\t{}\t{}\n').format(job, company, companytype, area,
                                                                                   experience,degree, low_salary, high_salary
                                                                                  )
        f = codecs.open('51jobanaly.xls', 'a+')
        f.write(output)
        f.close()


if __name__ == '__main__':
    main()

主要把薪资处理成以千/月为单位。保留城市。
处理后的数据:


img_59e648680a0be9195f823d8149140e62.png
处理后的数据
目录
相关文章
|
2月前
|
数据采集 数据可视化 数据挖掘
利用Python自动化处理Excel数据:从基础到进阶####
本文旨在为读者提供一个全面的指南,通过Python编程语言实现Excel数据的自动化处理。无论你是初学者还是有经验的开发者,本文都将帮助你掌握Pandas和openpyxl这两个强大的库,从而提升数据处理的效率和准确性。我们将从环境设置开始,逐步深入到数据读取、清洗、分析和可视化等各个环节,最终实现一个实际的自动化项目案例。 ####
305 10
|
6天前
|
数据采集 数据安全/隐私保护 Python
从零开始:用Python爬取网站的汽车品牌和价格数据
在现代化办公室中,工程师小李和产品经理小张讨论如何获取懂车帝网站的汽车品牌和价格数据。小李提出使用Python编写爬虫,并通过亿牛云爬虫代理避免被封禁。代码实现包括设置代理、请求头、解析网页内容、多线程爬取等步骤,确保高效且稳定地抓取数据。小张表示理解并准备按照指导操作。
从零开始:用Python爬取网站的汽车品牌和价格数据
|
1天前
|
算法 Serverless 数据处理
从集思录可转债数据探秘:Python与C++实现的移动平均算法应用
本文探讨了如何利用移动平均算法分析集思录提供的可转债数据,帮助投资者把握价格趋势。通过Python和C++两种编程语言实现简单移动平均(SMA),展示了数据处理的具体方法。Python代码借助`pandas`库轻松计算5日SMA,而C++代码则通过高效的数据处理展示了SMA的计算过程。集思录平台提供了详尽且及时的可转债数据,助力投资者结合算法与社区讨论,做出更明智的投资决策。掌握这些工具和技术,有助于在复杂多变的金融市场中挖掘更多价值。
22 12
|
1月前
|
数据采集 Web App开发 数据可视化
Python用代理IP获取抖音电商达人主播数据
在当今数字化时代,电商直播成为重要的销售模式,抖音电商汇聚了众多达人主播。了解这些主播的数据对于品牌和商家至关重要。然而,直接从平台获取数据并非易事。本文介绍如何使用Python和代理IP高效抓取抖音电商达人主播的关键数据,包括主播昵称、ID、直播间链接、观看人数、点赞数和商品列表等。通过环境准备、代码实战及数据处理与可视化,最终实现定时任务自动化抓取,为企业决策提供有力支持。
|
1月前
|
数据可视化 数据挖掘 大数据
1.1 学习Python操作Excel的必要性
学习Python操作Excel在当今数据驱动的商业环境中至关重要。Python能处理大规模数据集,突破Excel行数限制;提供丰富的库实现复杂数据分析和自动化任务,显著提高效率。掌握这项技能不仅能提升个人能力,还能为企业带来价值,减少人为错误,提高决策效率。推荐从基础语法、Excel操作库开始学习,逐步进阶到数据可视化和自动化报表系统。通过实际项目巩固知识,关注新技术,为职业发展奠定坚实基础。
|
2月前
|
数据采集 Web App开发 监控
Python爬虫:爱奇艺榜单数据的实时监控
Python爬虫:爱奇艺榜单数据的实时监控
|
3月前
|
Java 测试技术 持续交付
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
本文重点讲解如何搭建App自动化测试框架的思路,而非完整源码。主要内容包括实现目的、框架设计、环境依赖和框架的主要组成部分。适用于初学者,旨在帮助其快速掌握App自动化测试的基本技能。文中详细介绍了从需求分析到技术栈选择,再到具体模块的封装与实现,包括登录、截图、日志、测试报告和邮件服务等。同时提供了运行效果的展示,便于理解和实践。
190 4
【入门思路】基于Python+Unittest+Appium+Excel+BeautifulReport的App/移动端UI自动化测试框架搭建思路
|
2月前
|
数据采集 分布式计算 大数据
构建高效的数据管道:使用Python进行ETL任务
在数据驱动的世界中,高效地处理和移动数据是至关重要的。本文将引导你通过一个实际的Python ETL(提取、转换、加载)项目,从概念到实现。我们将探索如何设计一个灵活且可扩展的数据管道,确保数据的准确性和完整性。无论你是数据工程师、分析师还是任何对数据处理感兴趣的人,这篇文章都将成为你工具箱中的宝贵资源。
|
2月前
|
数据采集 存储 XML
python实战——使用代理IP批量获取手机类电商数据
本文介绍了如何使用代理IP批量获取华为荣耀Magic7 Pro手机在电商网站的商品数据,包括名称、价格、销量和用户评价等。通过Python实现自动化采集,并存储到本地文件中。使用青果网络的代理IP服务,可以提高数据采集的安全性和效率,确保数据的多样性和准确性。文中详细描述了准备工作、API鉴权、代理授权及获取接口的过程,并提供了代码示例,帮助读者快速上手。手机数据来源为京东(item.jd.com),代理IP资源来自青果网络(qg.net)。
|
3月前
|
数据采集 数据挖掘 数据格式
使用Python进行数据清洗的实用指南
在数据分析的世界里,"垃圾进,垃圾出"这句老话再贴切不过。数据清洗作为数据分析前的关键步骤,直接影响着分析结果的准确性与可靠性。本文将通过浅显易懂的语言和实际代码示例,带你掌握如何使用Python及其强大的库进行数据清洗,从缺失值处理到异常值检测,再到数据格式转换和重复数据删除,让你的数据准备工作变得既高效又专业。
177 2

热门文章

最新文章

推荐镜像

更多