PgSQL · 应用案例 · PostgreSQL 图像搜索实践

本文涉及的产品
RDS SQL Server Serverless,2-4RCU 50GB 3个月
推荐场景:
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
简介: 背景imgsmlr是PostgreSQL的一款支持以图搜图的插件, 支持1、几种图像特征值数据类型,2、图像特征值相似算子,3、图像特征值相似排序索引支持,4、图像相似排序的索引(通过扩展GiST索引接口实现)支持,5、png,gif等图像格式特征值提取函数。

背景

imgsmlr是PostgreSQL的一款支持以图搜图的插件, 支持

1、几种图像特征值数据类型,

2、图像特征值相似算子,

3、图像特征值相似排序索引支持,

4、图像相似排序的索引(通过扩展GiST索引接口实现)支持,

5、png,gif等图像格式特征值提取函数。

图像特征值为64*64的16个区域经过小波转换后的16个浮点数。

在数据量(图片数)非常庞大时,输入一个图片特征值,搜索相似度排行前N的图片,性能如何呢?如何优化呢?

接下来的3篇文档将分别介绍如下三种场景的图像特征值搜索性能以及优化思路:

1、单机单表

2、单机分区表(使用DBLINK 异步调用)

https://github.com/digoal/blog/blob/master/201809/20180904_03.md

3、citus,多机,sharding 表

https://github.com/digoal/blog/blob/master/201809/20180904_04.md

阿里云postgresql支持imgsmlr插件

1、在需要使用图像搜索的数据库中创建插件

create extension imgsmlr;

单节点 单表图像搜索 (4亿图像)

1、创建生成随机图像特征值signature的UDF。

create or replace function gen_rand_img_sig(int) returns signature as $$  
  select ('('||rtrim(ltrim(array(select (random()*$1)::float4 from generate_series(1,16))::text,'{'),'}')||')')::signature;  
$$ language sql strict;  
postgres=# select * from gen_rand_img_sig(10);  
                                                                         gen_rand_img_sig                                                                           
------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 (6.744310, 5.105020, 0.087113, 3.808010, 8.129480, 2.834540, 2.495250, 0.940481, 0.033208, 6.583490, 2.840330, 1.422440, 6.683830, 0.080847, 8.327730, 2.471430)  
(1 row)  
  
postgres=# select * from gen_rand_img_sig(10);  
                                                                         gen_rand_img_sig                                                                           
------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 (3.013650, 6.170690, 0.601905, 2.692030, 1.268540, 7.803740, 9.757770, 5.537750, 0.391753, 4.440790, 1.201580, 5.501380, 6.166980, 0.240686, 9.768680, 2.911290)  
(1 row)  

2、建表,建图像特征值索引

create table t_img_sig (id int primary key, sig signature);  
create index idx_t_img_sig_1 on t_img_sig using gist(sig);  

3、写入约4亿随机图像特征值

vi testsig.sql  
\set id random(1,2000000000)  
insert into t_img_sig values (:id, gen_rand_img_sig(10)) on conflict(id) do nothing;  
pgbench -M prepared -n -r -P 1 -f ./testsig.sql -c 32 -j 32 -t 20000000  
postgres=# select * from t_img  limit 10;  
    id     |                                                                               sig                                                                                  
-----------+------------------------------------------------------------------------------------------------------------------------------------------------------------------  
  47902935 | (5.861920, 1.062770, 8.318020, 2.205840, 0.202951, 6.956610, 1.413190, 2.898480, 8.961630, 6.377800, 1.110450, 6.684520, 2.286290, 7.850760, 1.832650, 0.074348)  
 174656795 | (2.165030, 0.183753, 9.913950, 9.208260, 5.165660, 6.603510, 2.008380, 8.117910, 2.358590, 5.466330, 9.139280, 8.893700, 4.664190, 9.361670, 9.016990, 2.271000)  
  96186891 | (9.605980, 4.395920, 4.336720, 3.174360, 8.706960, 0.155107, 9.408940, 4.531100, 2.783530, 5.681780, 9.792380, 6.428320, 2.983760, 9.733290, 7.635160, 7.035780)  
  55061667 | (7.567960, 5.874530, 5.222040, 5.638520, 3.488960, 8.770750, 7.054610, 7.239630, 9.202280, 9.465020, 4.079080, 5.729770, 0.475227, 8.434800, 6.873730, 5.140080)  
  64659434 | (4.860650, 3.984440, 3.009900, 5.116680, 6.489150, 4.224800, 0.609752, 8.731120, 6.577390, 8.542540, 9.096120, 8.976700, 8.936000, 2.836270, 7.186250, 6.264300)  
  87143098 | (4.801570, 7.870150, 0.939599, 3.666670, 1.102340, 5.819580, 6.511330, 6.430760, 0.584531, 3.024190, 6.255460, 8.823820, 5.076960, 0.181344, 8.137380, 1.230360)  
 109245945 | (7.541850, 7.201460, 6.858400, 2.605210, 1.283090, 7.525200, 4.213240, 8.413760, 9.707390, 1.916970, 1.719320, 1.255280, 9.006780, 4.851420, 2.168250, 5.997360)  
   4979218 | (8.463000, 4.051410, 9.057320, 1.367980, 3.344340, 7.032640, 8.583770, 1.873090, 5.524810, 0.187254, 5.783270, 6.141040, 2.479410, 6.406450, 9.371700, 0.050690)  
  72846137 | (7.018560, 4.039150, 9.114800, 2.911170, 5.531180, 8.557330, 6.739050, 0.103649, 3.691390, 7.584640, 8.184180, 0.599390, 9.037130, 4.090610, 4.369770, 6.480000)  
  36813995 | (4.643480, 8.704640, 1.073880, 2.665530, 3.298300, 9.244280, 5.768050, 0.887555, 5.990350, 2.991390, 6.186550, 6.464940, 6.187140, 0.150242, 2.123070, 2.932270)  
(10 rows)  
  
Time: 58.101 ms  

写入约4.39亿图像特征值。

postgres=# select count(*) from t_img_sig;  
   count     
-----------  
 438924137  
(1 row)  

4、输入一个图像特征值,搜索与之最相似的图像。

explain (analyze,verbose,timing,costs,buffers) select * from t_img_sig order by sig <-> '(5.07998,6.80827,5.42024,2.53619,4.10843,0.532198,4.33886,9.60262,6.68369,8.01305,9.60298,8.087,1.25819,6.54424,6.04902,5.3444)' limit 1;  
postgres=# explain (analyze,verbose,timing,costs,buffers) select * from t_img_sig where signature_distance(sig,'(5.07998,6.80827,5.42024,2.53619,4.10843,0.532198,4.33886,9.60262,6.68369,8.01305,9.60298,8.087,1.25819,6.54424,6.04902,5.3444)') > 0.9 order by sig <-> '(5.07998,6.80827,5.42024,2.53619,4.10843,0.532198,4.33886,9.60262,6.68369,8.01305,9.60298,8.087,1.25819,6.54424,6.04902,5.3444)' limit 1;  
                                                                                                                          QUERY PLAN                                                                                                          
                    
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.48..0.51 rows=1 width=72) (actual time=4094.810..4094.812 rows=1 loops=1)  
   Output: id, sig, ((sig <-> '(5.079980, 6.808270, 5.420240, 2.536190, 4.108430, 0.532198, 4.338860, 9.602620, 6.683690, 8.013050, 9.602980, 8.087000, 1.258190, 6.544240, 6.049020, 5.344400)'::signature))  
   Buffers: shared hit=205999  
   ->  Index Scan using idx_t_img_sig_1 on public.t_img_sig  (cost=0.48..5361351.06 rows=146395778 width=72) (actual time=4094.808..4094.808 rows=1 loops=1)  
         Output: id, sig, (sig <-> '(5.079980, 6.808270, 5.420240, 2.536190, 4.108430, 0.532198, 4.338860, 9.602620, 6.683690, 8.013050, 9.602980, 8.087000, 1.258190, 6.544240, 6.049020, 5.344400)'::signature)  
         Order By: (t_img_sig.sig <-> '(5.079980, 6.808270, 5.420240, 2.536190, 4.108430, 0.532198, 4.338860, 9.602620, 6.683690, 8.013050, 9.602980, 8.087000, 1.258190, 6.544240, 6.049020, 5.344400)'::signature)  
         Filter: (signature_distance(t_img_sig.sig, '(5.079980, 6.808270, 5.420240, 2.536190, 4.108430, 0.532198, 4.338860, 9.602620, 6.683690, 8.013050, 9.602980, 8.087000, 1.258190, 6.544240, 6.049020, 5.344400)'::signature) > '0.9'::double precision)  
         Buffers: shared hit=205999  
 Planning Time: 0.073 ms  
 Execution Time: 4194.485 ms  
(10 rows)  

性能与瓶颈

性能:4.39亿图像特征值,以图搜图约4.2秒。

瓶颈:

1、扫描了大量的索引页(205999)。

优化思路

1、压缩精度,比如使用3位小数。据用户说有10倍性能提升。

精度优化如下,使用新的生成图像特征值的函数,使用3位小数。

create or replace function gen_rand_img_sig3(int) returns signature as $$  
  select ('('||rtrim(ltrim(array(select trunc((random()*$1)::numeric,3) from generate_series(1,16))::text,'{'),'}')||')')::signature;  
$$ language sql strict;  

例子如下

postgres=# select gen_rand_img_sig3(10);  
                                                                        gen_rand_img_sig3                                                                           
------------------------------------------------------------------------------------------------------------------------------------------------------------------  
 (2.984000, 3.323000, 4.083000, 6.292000, 5.008000, 9.029000, 6.208000, 1.141000, 1.796000, 9.257000, 1.397000, 1.235000, 7.157000, 3.745000, 0.112000, 7.723000)  
(1 row)  

2、使用分区表+dblink异步接口并行调用。(内核层面直接支持imgsmlr gist index scan并行更好)

下一篇介绍

3、使用citus sharding。多机,提高整体计算能力。 (因为扫描大量索引页,即使CPU没有瓶颈,将来内存带宽也会成为瓶颈。多机可以解决这个问题。)

下一篇介绍

4、内核层面,支持维度更低的signature,现在是16片,比如支持降低到4片,性能也可以提升。

精度现象

1、当有记录可以完全匹配时,扫描少量INDEX PAGE。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from  t_img_sig order by sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179000)'::signature limit 1;
                                                                                                     QUERY PLAN                                                                                                      
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.48..0.49 rows=1 width=72) (actual time=1.596..1.598 rows=1 loops=1)
   Output: id, sig, ((sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179000)'::signature))
   Buffers: shared hit=125
   ->  Index Scan using t_img_sig1_sig_idx on public.t_img_sig  (cost=0.48..7318159.22 rows=785457848 width=72) (actual time=1.594..1.595 rows=1 loops=1)
         Output: id, sig, (sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179000)'::signature)
         Order By: (t_img_sig.sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179000)'::signature)
         Buffers: shared hit=125
 Planning Time: 0.072 ms
 Execution Time: 1.621 ms
(9 rows)

2、当修改少量内容,少量值完全匹配,其他值不完全匹配时,扫描的INDEX PAGE增加。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from  t_img_sig order by sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179001)'::signature limit 1;
                                                                                                     QUERY PLAN                                                                                                      
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.48..0.49 rows=1 width=72) (actual time=7.051..7.052 rows=1 loops=1)
   Output: id, sig, ((sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179001)'::signature))
   Buffers: shared hit=454
   ->  Index Scan using t_img_sig1_sig_idx on public.t_img_sig  (cost=0.48..7324626.56 rows=786152016 width=72) (actual time=7.049..7.049 rows=1 loops=1)
         Output: id, sig, (sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179001)'::signature)
         Order By: (t_img_sig.sig <-> '(3.727000, 2.594000, 0.185000, 3.996000, 6.450000, 7.126000, 5.499000, 1.540000, 8.239000, 6.262000, 2.053000, 2.566000, 4.522000, 6.929000, 1.582000, 2.179001)'::signature)
         Buffers: shared hit=454
 Planning Time: 0.074 ms
 Execution Time: 7.076 ms
(9 rows)

3、当大量修改值,不能完全匹配时,需要扫描大量INDEX PAGE。

postgres=# explain (analyze,verbose,timing,costs,buffers) select * from  t_img_sig order by sig <-> '(7.727000, 3.594000, 1.185000, 4.996000, 6.950000, 7.129000, 5.429000, 1.520000, 8.219000, 6.222000, 2.013000, 2.536000, 4.532000, 6.939000, 1.538000, 2.178000)'::signature limit 1;
                                                                                                     QUERY PLAN                                                                                                      
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=0.47..0.48 rows=1 width=72) (actual time=2528.890..2528.891 rows=1 loops=1)
   Output: id, sig, ((sig <-> '(7.727000, 3.594000, 1.185000, 4.996000, 6.950000, 7.129000, 5.429000, 1.520000, 8.219000, 6.222000, 2.013000, 2.536000, 4.532000, 6.939000, 1.538000, 2.178000)'::signature))
   Buffers: shared hit=121510
   ->  Index Scan using t_img_sig1_sig_idx on public.t_img_sig  (cost=0.47..1361409.21 rows=146121007 width=72) (actual time=2528.887..2528.888 rows=1 loops=1)
         Output: id, sig, (sig <-> '(7.727000, 3.594000, 1.185000, 4.996000, 6.950000, 7.129000, 5.429000, 1.520000, 8.219000, 6.222000, 2.013000, 2.536000, 4.532000, 6.939000, 1.538000, 2.178000)'::signature)
         Order By: (t_img_sig.sig <-> '(7.727000, 3.594000, 1.185000, 4.996000, 6.950000, 7.129000, 5.429000, 1.520000, 8.219000, 6.222000, 2.013000, 2.536000, 4.532000, 6.939000, 1.538000, 2.178000)'::signature)
         Buffers: shared hit=121510
 Planning Time: 0.092 ms
 Execution Time: 2582.558 ms
(9 rows)

具体原因可以参考

https://github.com/postgrespro/imgsmlr/blob/master/imgsmlr_idx.c

https://www.postgresql.org/docs/devel/static/xindex.html

参考

https://github.com/postgrespro/imgsmlr

《PostgreSQL 相似搜索插件介绍大汇总 (rum,pg_trgm,smlar,imgsmlr,pg_similarity) (rum,gin,gist)》

目录
相关文章
|
关系型数据库 物联网 PostgreSQL
沉浸式学习PostgreSQL|PolarDB 11: 物联网(IoT)、监控系统、应用日志、用户行为记录等场景 - 时序数据高吞吐存取分析
物联网场景, 通常有大量的传感器(例如水质监控、气象监测、新能源汽车上的大量传感器)不断探测最新数据并上报到数据库. 监控系统, 通常也会有采集程序不断的读取被监控指标(例如CPU、网络数据包转发、磁盘的IOPS和BW占用情况、内存的使用率等等), 同时将监控数据上报到数据库. 应用日志、用户行为日志, 也就有同样的特征, 不断产生并上报到数据库. 以上数据具有时序特征, 对数据库的关键能力要求如下: 数据高速写入 高速按时间区间读取和分析, 目的是发现异常, 分析规律. 尽量节省存储空间
761 1
|
3月前
|
运维 监控 关系型数据库
【一文搞懂PGSQL】7. PostgreSQL + repmgr + witness 高可用架构
该文档介绍了如何构建基于PostgreSQL的高可用架构,利用repmgr进行集群管理和故障转移,并引入witness节点增强网络故障检测能力。repmgr是一款轻量级的开源工具,支持一键部署、自动故障转移及分布式节点管理。文档详细描述了环境搭建步骤,包括配置postgresql参数、安装与配置repmgr、注册集群节点以及配置witness节点等。此外,还提供了故障手动与自动切换的方法及常用命令,确保集群稳定运行。
|
3月前
|
负载均衡 关系型数据库 PostgreSQL
【一文搞懂PGSQL】6. PostgreSQL + pgpool-II 实现读写分离
本文介绍了如何使用 PostgreSQL 和 pgpool-II 实现读写分离。pgpool-II 支持连接池、负载均衡等功能,适用于多种模式。文中详细描述了安装、配置及启动过程,并提供了示例命令,帮助读者快速搭建并验证读写分离环境。通过配置 `pgpool.conf` 文件指定监听地址、端口及节点信息等参数,确保系统的高效运行与故障转移。
|
人工智能 关系型数据库 Serverless
阿里函数计算FC、文件存储NAS和RDS PostgreSQL的应用体验报告
本次体验的目的,旨在详细介绍如何通过阿里函数计算FC部署ChatGLM6B大语言模型,并借助文件存储NAS和RDS PostgreSQL搭建一个AI知识库问答应用,以实现PDF、TXT、HTML等文件和URL类型资料的轻松读取和处理。
305 62
|
5月前
|
自然语言处理 关系型数据库 数据库
技术经验解读:【转】PostgreSQL的FTI(TSearch)与中文全文索引的实践
技术经验解读:【转】PostgreSQL的FTI(TSearch)与中文全文索引的实践
66 0
|
5月前
|
SQL 关系型数据库 PostgreSQL
【sql】PostgreSQL物化视图表使用案例
【sql】PostgreSQL物化视图表使用案例
53 0
|
6月前
|
存储 JSON 关系型数据库
PostgreSQL Json应用场景介绍和Shared Detoast优化
PostgreSQL Json应用场景介绍和Shared Detoast优化
|
6月前
|
弹性计算 关系型数据库 数据库
开源PostgreSQL在倚天ECS上的最佳优化实践
本文基于倚天ECS硬件平台,以自顶向下的方式从上层应用、到基础软件,再到底层芯片硬件,通过应用与芯片的硬件特性的亲和性分析,实现PostgreSQL与倚天芯片软硬协同的深度优化,充分使能倚天硬件性能,帮助开源PostgreSQL应用实现性能提升。
|
6月前
|
SQL 运维 关系型数据库
基于AnalyticDB PostgreSQL的实时物化视图研发实践
AnalyticDB PostgreSQL版提供了实时物化视图功能,相较于普通(非实时)物化视图,实时物化视图无需手动调用刷新命令,即可实现数据更新时自动同步刷新物化视图。当基表发生变化时,构建在基表上的实时物化视图将会自动更新。AnalyticDB PostgreSQL企业数据智能平台是构建数据智能的全流程平台,提供可视化实时任务开发 + 实时数据洞察,让您轻松平移离线任务,使用SQL和简单配置即可完成整个实时数仓的搭建。
143994 8
|
6月前
|
关系型数据库 数据库 PostgreSQL
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
Docker【应用 03】给Docker部署的PostgreSQL数据库安装PostGIS插件(安装流程及问题说明)
384 0

相关产品

  • 云原生数据库 PolarDB
  • 云数据库 RDS PostgreSQL 版