Java集合详解2:LinkedList和Queue

简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a724888/article/details/80275501 这位大侠,这是我的公众号:程序员江湖。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/a724888/article/details/80275501

微信公众号【Java技术江湖】一位阿里 Java 工程师的技术小站。(关注公众号后回复”Java“即可领取 Java基础、进阶、项目和架构师等免费学习资料,更有数据库、分布式、微服务等热门技术学习视频,内容丰富,兼顾原理和实践,另外也将赠送作者原创的Java学习指南、Java程序员面试指南等干货资源)



今天我们来探索一下LinkedList和Queue,以及Stack的源码。

具体代码在我的GitHub中可以找到

https://github.com/h2pl/MyTech

喜欢的话麻烦star一下哈

文章首发于我的个人博客:

https://h2pl.github.io/2018/05/09/collection2

更多关于Java后端学习的内容请到我的CSDN博客上查看:https://blog.csdn.net/a724888

我的个人博客主要发原创文章,也欢迎浏览
https://h2pl.github.io/

本文参考 http://cmsblogs.com/?p=155

https://www.jianshu.com/p/0e84b8d3606c

概述

LinkedList与ArrayList一样实现List接口,只是ArrayList是List接口的大小可变数组的实现,LinkedList是List接口链表的实现。基于链表实现的方式使得LinkedList在插入和删除时更优于ArrayList,而随机访问则比ArrayList逊色些。

LinkedList实现所有可选的列表操作,并允许所有的元素包括null。

除了实现 List 接口外,LinkedList 类还为在列表的开头及结尾 get、remove 和 insert 元素提供了统一的命名方法。这些操作允许将链接列表用作堆栈、队列或双端队列。

此类实现 Deque 接口,为 add、poll 提供先进先出队列操作,以及其他堆栈和双端队列操作。

所有操作都是按照双重链接列表的需要执行的。在列表中编索引的操作将从开头或结尾遍历列表(从靠近指定索引的一端)。

同时,与ArrayList一样此实现不是同步的。

(以上摘自JDK 6.0 API)。

源码分析

定义

首先我们先看LinkedList的定义:

public class LinkedList<E>
    extends AbstractSequentialList<E>
    implements List<E>, Deque<E>, Cloneable, java.io.Serializable
      从这段代码中我们可以清晰地看出LinkedList继承AbstractSequentialList,实现List、Deque、Cloneable、Serializable。其中AbstractSequentialList提供了 List 接口的骨干实现,从而最大限度地减少了实现受“连续访问”数据存储(如链接列表)支持的此接口所需的工作,从而以减少实现List接口的复杂度。Deque一个线性 collection,支持在两端插入和移除元素,定义了双端队列的操作。

属性

在LinkedList中提供了两个基本属性size、header。

private transient Entry header = new Entry(null, null, null);
private transient int size = 0;
其中size表示的LinkedList的大小,header表示链表的表头,Entry为节点对象。

private static class Entry<E> {
    E element;        //元素节点
    Entry<E> next;    //下一个元素
    Entry<E> previous;  //上一个元素

    Entry(E element, Entry<E> next, Entry<E> previous) {
        this.element = element;
        this.next = next;
        this.previous = previous;
    }
}
  上面为Entry对象的源代码,Entry为LinkedList的内部类,它定义了存储的元素。该元素的前一个元素、后一个元素,这是典型的双向链表定义方式。

构造方法

LinkedList提供了两个构造方法:LinkedList()和LinkedList(Collection

增加方法

  add(E e): 将指定元素添加到此列表的结尾。

public boolean add(E e) {
    addBefore(e, header);
        return true;
    }
      该方法调用addBefore方法,然后直接返回true,对于addBefore()而已,它为LinkedList的私有方法。

private Entry<E> addBefore(E e, Entry<E> entry) {
        //利用Entry构造函数构建一个新节点 newEntry,
        Entry<E> newEntry = new Entry<E>(e, entry, entry.previous);
        //修改newEntry的前后节点的引用,确保其链表的引用关系是正确的
        newEntry.previous.next = newEntry;
        newEntry.next.previous = newEntry;
        //容量+1
        size++;
        //修改次数+1
        modCount++;
        return newEntry;
    }

在addBefore方法中无非就是做了这件事:构建一个新节点newEntry,然后修改其前后的引用。

LinkedList还提供了其他的增加方法:

  add(int index, E element):在此列表中指定的位置插入指定的元素。

  addAll(Collection<? extends E> c):添加指定 collection 中的所有元素到此列表的结尾,顺序是指定 collection 的迭代器返回这些元素的顺序。

  addAll(int index, Collection<? extends E> c):将指定 collection 中的所有元素从指定位置开始插入此列表。

  AddFirst(E e): 将指定元素插入此列表的开头。

  addLast(E e): 将指定元素添加到此列表的结尾。

移除方法

  remove(Object o):从此列表中移除首次出现的指定元素(如果存在)。该方法的源代码如下:

public boolean remove(Object o) {
        if (o==null) {
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (e.element==null) {
                    remove(e);
                    return true;
                }
            }
        } else {
            for (Entry<E> e = header.next; e != header; e = e.next) {
                if (o.equals(e.element)) {
                    remove(e);
                    return true;
                }
            }
        }
        return false;
    }

该方法首先会判断移除的元素是否为null,然后迭代这个链表找到该元素节点,最后调用remove(Entry e),remove(Entry e)为私有方法,是LinkedList中所有移除方法的基础方法,如下:

private E remove(Entry<E> e) {
        if (e == header)
            throw new NoSuchElementException();

        //保留被移除的元素:要返回
        E result = e.element;

        //将该节点的前一节点的next指向该节点后节点
        e.previous.next = e.next;
        //将该节点的后一节点的previous指向该节点的前节点
        //这两步就可以将该节点从链表从除去:在该链表中是无法遍历到该节点的
        e.next.previous = e.previous;
        //将该节点归空
        e.next = e.previous = null;
        e.element = null;
        size--;
        modCount++;
        return result;
    }

其他的移除方法:

  clear(): 从此列表中移除所有元素。

  remove():获取并移除此列表的头(第一个元素)。

  remove(int index):移除此列表中指定位置处的元素。

  remove(Objec o):从此列表中移除首次出现的指定元素(如果存在)。

  removeFirst():移除并返回此列表的第一个元素。

  removeFirstOccurrence(Object o):从此列表中移除第一次出现的指定元素(从头部到尾部遍历列表时)。

  removeLast():移除并返回此列表的最后一个元素。

  removeLastOccurrence(Object o):从此列表中移除最后一次出现的指定元素(从头部到尾部遍历列表时)。

查找方法

  对于查找方法的源码就没有什么好介绍了,无非就是迭代,比对,然后就是返回当前值。

  get(int index):返回此列表中指定位置处的元素。

  getFirst():返回此列表的第一个元素。

  getLast():返回此列表的最后一个元素。

  indexOf(Object o):返回此列表中首次出现的指定元素的索引,如果此列表中不包含该元素,则返回 -1。

  lastIndexOf(Object o):返回此列表中最后出现的指定元素的索引,如果此列表中不包含该元素,则返回 -1。

Queue

Queue接口定义了队列数据结构,元素是有序的(按插入顺序),先进先出。Queue接口相关的部分UML类图如下:

image

DeQueue

DeQueue(Double-ended queue)为接口,继承了Queue接口,创建双向队列,灵活性更强,可以前向或后向迭代,在队头队尾均可心插入或删除元素。它的两个主要实现类是ArrayDeque和LinkedList。

ArrayDeque (底层使用循环数组实现双向队列)

创建

public ArrayDeque() {
   // 默认容量为16
   elements = new Object[16];
}

public ArrayDeque(int numElements) {
   // 指定容量的构造函数
   allocateElements(numElements);
}
private void allocateElements(int numElements) {
        int initialCapacity = MIN_INITIAL_CAPACITY;// 最小容量为8
        // Find the best power of two to hold elements.
        // Tests "<=" because arrays aren't kept full.
        // 如果要分配的容量大于等于8,扩大成2的幂(是为了维护头、尾下标值);否则使用最小容量8
        if (numElements >= initialCapacity) {
            initialCapacity = numElements;
            initialCapacity |= (initialCapacity >>>  1);
            initialCapacity |= (initialCapacity >>>  2);
            initialCapacity |= (initialCapacity >>>  4);
            initialCapacity |= (initialCapacity >>>  8);
            initialCapacity |= (initialCapacity >>> 16);
            initialCapacity++;
            if (initialCapacity < 0)   // Too many elements, must back off
                initialCapacity >>>= 1;// Good luck allocating 2 ^ 30 elements
        }
        elements = new Object[initialCapacity];
    }

add操作

add(E e) 调用 addLast(E e) 方法:
public void addLast(E e) {
   if (e == null)
      throw new NullPointerException("e == null");
   elements[tail] = e; // 根据尾索引,添加到尾端
   // 尾索引+1,并与数组(length - 1)进行取‘&’运算,因为length是2的幂,所以(length-1)转换为2进制全是1,
   // 所以如果尾索引值 tail 小于等于(length - 1),那么‘&’运算后仍为 tail 本身;如果刚好比(length - 1)大1时,
   // ‘&’运算后 tail 便为0(即回到了数组初始位置)。正是通过与(length - 1)进行取‘&’运算来实现数组的双向循环。
   // 如果尾索引和头索引重合了,说明数组满了,进行扩容。
   if ((tail = (tail + 1) & (elements.length - 1)) == head)
      doubleCapacity();// 扩容为原来的2倍
}


addFirst(E e) 的实现:
public void addFirst(E e) {
   if (e == null)
      throw new NullPointerException("e == null");
   // 此处如果head为0,则-1(1111 1111 1111 1111 1111 1111 1111 1111)与(length - 1)进行取‘&’运算,结果必然是(length - 1),即回到了数组的尾部。
   elements[head = (head - 1) & (elements.length - 1)] = e;
   // 如果尾索引和头索引重合了,说明数组满了,进行扩容
   if (head == tail)
      doubleCapacity();
}

remove操作

remove()方法最终都会调对应的poll()方法:
    public E poll() {
        return pollFirst();
    }
    public E pollFirst() {
        int h = head;
        @SuppressWarnings("unchecked") E result = (E) elements[h];
        // Element is null if deque empty
        if (result == null)
            return null;
        elements[h] = null;     // Must null out slot
        // 头索引 + 1
        head = (h + 1) & (elements.length - 1);
        return result;
    }
    public E pollLast() {
        // 尾索引 - 1
        int t = (tail - 1) & (elements.length - 1);
        @SuppressWarnings("unchecked") E result = (E) elements[t];
        if (result == null)
            return null;
        elements[t] = null;
        tail = t;
        return result;
    }

image

PriorityQueue(底层用数组实现堆的结构)

优先队列跟普通的队列不一样,普通队列是一种遵循FIFO规则的队列,拿数据的时候按照加入队列的顺序拿取。 而优先队列每次拿数据的时候都会拿出优先级最高的数据。

优先队列内部维护着一个堆,每次取数据的时候都从堆顶拿数据(堆顶的优先级最高),这就是优先队列的原理。

add,添加方法

public boolean add(E e) {
    return offer(e); // add方法内部调用offer方法
}
public boolean offer(E e) {
    if (e == null) // 元素为空的话,抛出NullPointerException异常
        throw new NullPointerException();
    modCount++;
    int i = size;
    if (i >= queue.length) // 如果当前用堆表示的数组已经满了,调用grow方法扩容
        grow(i + 1); // 扩容
    size = i + 1; // 元素个数+1
    if (i == 0) // 堆还没有元素的情况
        queue[0] = e; // 直接给堆顶赋值元素
    else // 堆中已有元素的情况
        siftUp(i, e); // 重新调整堆,从下往上调整,因为新增元素是加到最后一个叶子节点
    return true;
}
private void siftUp(int k, E x) {
    if (comparator != null)  // 比较器存在的情况下
        siftUpUsingComparator(k, x); // 使用比较器调整
    else // 比较器不存在的情况下
        siftUpComparable(k, x); // 使用元素自身的比较器调整
}
private void siftUpUsingComparator(int k, E x) {
    while (k > 0) { // 一直循环直到父节点还存在
        int parent = (k - 1) >>> 1; // 找到父节点索引,等同于(k - 1)/ 2
        Object e = queue[parent]; // 获得父节点元素
        // 新元素与父元素进行比较,如果满足比较器结果,直接跳出,否则进行调整
        if (comparator.compare(x, (E) e) >= 0) 
            break;
        queue[k] = e; // 进行调整,新位置的元素变成了父元素
        k = parent; // 新位置索引变成父元素索引,进行递归操作
    }
    queue[k] = x; // 新添加的元素添加到堆中
}

image
poll,出队方法

public E poll() {
    if (size == 0)
        return null;
    int s = --size; // 元素个数-1
    modCount++;
    E result = (E) queue[0]; // 得到堆顶元素
    E x = (E) queue[s]; // 最后一个叶子节点
    queue[s] = null; // 最后1个叶子节点置空
    if (s != 0)
        siftDown(0, x); // 从上往下调整,因为删除元素是删除堆顶的元素
    return result;
}
private void siftDown(int k, E x) {
    if (comparator != null) // 比较器存在的情况下
        siftDownUsingComparator(k, x); // 使用比较器调整
    else // 比较器不存在的情况下
        siftDownComparable(k, x); // 使用元素自身的比较器调整
}
private void siftDownUsingComparator(int k, E x) {
    int half = size >>> 1; // 只需循环节点个数的一般即可
    while (k < half) {
        int child = (k << 1) + 1; // 得到父节点的左子节点索引,即(k * 2)+ 1
        Object c = queue[child]; // 得到左子元素
        int right = child + 1; // 得到父节点的右子节点索引
        if (right < size &&
            comparator.compare((E) c, (E) queue[right]) > 0) // 左子节点跟右子节点比较,取更大的值
            c = queue[child = right];
        if (comparator.compare(x, (E) c) <= 0)  // 然后这个更大的值跟最后一个叶子节点比较
            break;
        queue[k] = c; // 新位置使用更大的值
        k = child; // 新位置索引变成子元素索引,进行递归操作
    }
    queue[k] = x; // 最后一个叶子节点添加到合适的位置
}

image
remove,删除队列元素

public boolean remove(Object o) {
    int i = indexOf(o); // 找到数据对应的索引
    if (i == -1) // 不存在的话返回false
        return false;
    else { // 存在的话调用removeAt方法,返回true
        removeAt(i);
        return true;
    }
}
private E removeAt(int i) {
    modCount++;
    int s = --size; // 元素个数-1
    if (s == i) // 如果是删除最后一个叶子节点
        queue[i] = null; // 直接置空,删除即可,堆还是保持特质,不需要调整
    else { // 如果是删除的不是最后一个叶子节点
        E moved = (E) queue[s]; // 获得最后1个叶子节点元素
        queue[s] = null; // 最后1个叶子节点置空
        siftDown(i, moved); // 从上往下调整
        if (queue[i] == moved) { // 如果从上往下调整完毕之后发现元素位置没变,从下往上调整
            siftUp(i, moved); // 从下往上调整
            if (queue[i] != moved)
                return moved;
        }
    }
    return null;
}

先执行 siftDown() 下滤过程:

image

再执行 siftUp() 上滤过程:

image

总结和同步的问题

1、jdk内置的优先队列PriorityQueue内部使用一个堆维护数据,每当有数据add进来或者poll出去的时候会对堆做从下往上的调整和从上往下的调整。

2、PriorityQueue不是一个线程安全的类,如果要在多线程环境下使用,可以使用 PriorityBlockingQueue 这个优先阻塞队列。其中add、poll、remove方法都使用 ReentrantLock 锁来保持同步,take() 方法中如果元素为空,则会一直保持阻塞。

相关文章
|
5天前
|
存储 缓存 安全
Java 集合江湖:底层数据结构的大揭秘!
小米是一位热爱技术分享的程序员,本文详细解析了Java面试中常见的List、Set、Map的区别。不仅介绍了它们的基本特性和实现类,还深入探讨了各自的使用场景和面试技巧,帮助读者更好地理解和应对相关问题。
25 5
|
18天前
|
存储 缓存 安全
Java 集合框架优化:从基础到高级应用
《Java集合框架优化:从基础到高级应用》深入解析Java集合框架的核心原理与优化技巧,涵盖列表、集合、映射等常用数据结构,结合实际案例,指导开发者高效使用和优化Java集合。
29 4
|
1月前
|
Java
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式
Java 8 引入的 Streams 功能强大,提供了一种简洁高效的处理数据集合的方式。本文介绍了 Streams 的基本概念和使用方法,包括创建 Streams、中间操作和终端操作,并通过多个案例详细解析了过滤、映射、归并、排序、分组和并行处理等操作,帮助读者更好地理解和掌握这一重要特性。
30 2
|
1月前
|
存储 Java
判断一个元素是否在 Java 中的 Set 集合中
【10月更文挑战第30天】使用`contains()`方法可以方便快捷地判断一个元素是否在Java中的`Set`集合中,但对于自定义对象,需要注意重写`equals()`方法以确保正确的判断结果,同时根据具体的性能需求选择合适的`Set`实现类。
|
1月前
|
安全 Java
Java多线程集合类
本文介绍了Java中线程安全的问题及解决方案。通过示例代码展示了使用`CopyOnWriteArrayList`、`CopyOnWriteArraySet`和`ConcurrentHashMap`来解决多线程环境下集合操作的线程安全问题。这些类通过不同的机制确保了线程安全,提高了并发性能。
|
1月前
|
存储 Java 索引
Java中的数据结构:ArrayList和LinkedList的比较
【10月更文挑战第28天】在Java编程世界中,数据结构是构建复杂程序的基石。本文将深入探讨两种常用的数据结构:ArrayList和LinkedList,通过直观的比喻和实例分析,揭示它们各自的优势与局限,帮助你在面对不同的编程挑战时做出明智的选择。
|
1月前
|
存储 Java 开发者
在 Java 中,如何遍历一个 Set 集合?
【10月更文挑战第30天】开发者可以根据具体的需求和代码风格选择合适的遍历方式。增强for循环简洁直观,适用于大多数简单的遍历场景;迭代器则更加灵活,可在遍历过程中进行更多复杂的操作;而Lambda表达式和`forEach`方法则提供了一种更简洁的函数式编程风格的遍历方式。
|
1月前
|
Java 开发者
|
2月前
|
安全 Java 程序员
深入Java集合框架:解密List的Fail-Fast与Fail-Safe机制
本文介绍了 Java 中 List 的遍历和删除操作,重点讨论了快速失败(fail-fast)和安全失败(fail-safe)机制。通过普通 for 循环、迭代器和 foreach 循环的对比,详细解释了各种方法的优缺点及适用场景,特别是在多线程环境下的表现。最后推荐了适合高并发场景的 fail-safe 容器,如 CopyOnWriteArrayList 和 ConcurrentHashMap。
64 5
|
1月前
|
存储 Java 开发者
Java中的集合框架深入解析
【10月更文挑战第32天】本文旨在为读者揭开Java集合框架的神秘面纱,通过深入浅出的方式介绍其内部结构与运作机制。我们将从集合框架的设计哲学出发,探讨其如何影响我们的编程实践,并配以代码示例,展示如何在真实场景中应用这些知识。无论你是Java新手还是资深开发者,这篇文章都将为你提供新的视角和实用技巧。
29 0