android bitmap的内存分配和优化

简介: 首先Bitmap在Android虚拟机中的内存分配,在Google的网站上给出了下面的一段话  大致的意思也就是说,在Android3.0之前,Bitmap的内存分配分为两部分,一部分是分配在Dalvik的VM堆中,而像素数据的内存是分配在Native堆中,而到了Android3.0之后,Bitmap的内存则已经全部分配在VM堆上,这两种分配方式的区别在于,Native堆的内存不受Dal
首先Bitmap在Android虚拟机中的内存分配,在Google的网站上给出了下面的一段话 

技术分享

大致的意思也就是说,在Android3.0之前,Bitmap的内存分配分为两部分,一部分是分配在Dalvik的VM堆中,而像素数据的内存是分配在Native堆中,而到了Android3.0之后,Bitmap的内存则已经全部分配在VM堆上,这两种分配方式的区别在于,Native堆的内存不受Dalvik虚拟机的管理,我们想要释放Bitmap的内存,必须手动调用Recycle方法,而到了Android 3.0之后的平台,我们就可以将Bitmap的内存完全放心的交给虚拟机管理了,我们只需要保证Bitmap对象遵守虚拟机的GC Root Tracing的回收规则即可。OK,基础知识科普到此。接下来分几个要点来谈谈如何优化Bitmap内存问题。

针对3.0版本的优化方案,请看以下代码,

private int mCacheRefCount = 0;//缓存引用计数器
private int mDisplayRefCount = 0;//显示引用计数器
...
// 当前Bitmap是否被显示在UI界面上
public void setIsDisplayed(boolean isDisplayed) {
    synchronized (this) {
        if (isDisplayed) {
            mDisplayRefCount++;
            mHasBeenDisplayed = true;
        } else {
            mDisplayRefCount--;
        }
    }

    checkState();
}

//标记是否被缓存
public void setIsCached(boolean isCached) {
    synchronized (this) {
        if (isCached) {
            mCacheRefCount++;
        } else {
            mCacheRefCount--;
        }
    }

    checkState();
}

//用于检测Bitmap是否已经被回收
private synchronized void checkState() {
    if (mCacheRefCount <= 0 && mDisplayRefCount <= 0 && mHasBeenDisplayed
            && hasValidBitmap()) {
        getBitmap().recycle();
    }
}

private synchronized boolean hasValidBitmap() {
    Bitmap bitmap = getBitmap();
    return bitmap != null && !bitmap.isRecycled();
}

通过引用计数的方法(mDisplayRefCount 与 mCacheRefCount)来追踪一个bitmap目前是否有被显示或者是在缓存中. 当下面条件满足时回收bitmap。

2.使用缓存,LruCache和DiskLruCache的结合 
LruCache和DiskLruCache,大家一定不会陌生出于对性能和app的考虑,我们肯定是想着第一次从网络中加载到图片之后,能够将图片缓存在内存和sd卡中,这样,我们就不用频繁的去网络中加载图片,为了很好的控制内存问题,则会考虑使用LruCache作为Bitmap在内存中的存放容器,在sd卡则使用DiskLruCache来统一管理磁盘上的图片缓存。

3.SoftReference和inBitmap参数的结合 
在第二点中提及到,可以采用LruCache作为存放Bitmap的容器,而在LruCache中有一个方法值得留意,那就是entryRemoved,按照文档给出的说法,在LruCache容器满了需要淘汰存放其中的对象腾出空间的时候会调用此方法(注意,这里只是对象被淘汰出LruCache容器,但并不意味着对象的内存会立即被Dalvik虚拟机回收掉),此时可以在此方法中将Bitmap使用SoftReference包裹起来,并用事先准备好的一个HashSet容器来存放这些即将被回收的Bitmap,有人会问,这样存放有什么意义?之所以会这样存放,还需要再提及到inBitmap参数(在Android3.0才开始有的,详情查阅API中的BitmapFactory.Options参数信息),这个参数主要是提供给我们进行复用内存中的Bitmap。

如果需要使用Bitmap的option参数还需要满足以下几个条件:

  • Bitmap一定要是可变的,即inmutable设置一定为ture;
  • Android4.4以下的平台,需要保证inBitmap和即将要得到decode的Bitmap的尺寸规格一致;
  • Android4.4及其以上的平台,只需要满足inBitmap的尺寸大于要decode得到的Bitmap的尺寸规格即可;
4.降低采样率,inSampleSize的计算  

直接上代码

public static int calculateInSampleSize(BitmapFactory.Options options,int reqWidth, int reqHeight) {
        // Raw height and width of image
        final int height = options.outHeight;
        final int width = options.outWidth;
        int inSampleSize = 1;

        if (height > reqHeight || width > reqWidth) {

            final int halfHeight = height / 2;
            final int halfWidth = width / 2;

            while ((halfHeight / inSampleSize) > reqHeight && (halfWidth / inSampleSize) > reqWidth) {
                inSampleSize *= 2;
            }

            long totalPixels = width / inSampleSize * height / inSampleSize ;

            final long totalReqPixelsCap = reqWidth * reqHeight * 2;

            while (totalPixels > totalReqPixelsCap) {
                inSampleSize *= 2;
                totalPixels /= 2;
            }
        }
        return inSampleSize;

5.采用decodeFileDescriptor来编码图片,比直接使用decodeFile更省内存

查看BitmapFactory的源码,对比一下两者的实现,可以发现decodeFile()最终是以流的方式生成bitmap 

decodeFile源码:

[java]  view plain  copy
  1. public static Bitmap decodeFile(String pathName, Options opts) {  
  2.     Bitmap bm = null;  
  3.     InputStream stream = null;  
  4.     try {  
  5.         stream = new FileInputStream(pathName);  
  6.         bm = decodeStream(stream, null, opts);  
  7.     } catch (Exception e) {  
  8.         /*  do nothing. 
  9.             If the exception happened on open, bm will be null. 
  10.         */  
  11.     } finally {  
  12.         if (stream != null) {  
  13.             try {  
  14.                 stream.close();  
  15.             } catch (IOException e) {  
  16.                 // do nothing here  
  17.             }  
  18.         }  
  19.     }  
  20.     return bm;  
  21. }  

decodeFileDescriptor的源码,可以找到native本地方法decodeFileDescriptor,通过底层生成bitmap

decodeFileDescriptor源码:

[java]  view plain  copy
  1.    public static Bitmap decodeFileDescriptor(FileDescriptor fd, Rect outPadding, Options opts) {  
  2.        if (nativeIsSeekable(fd)) {  
  3.            Bitmap bm = nativeDecodeFileDescriptor(fd, outPadding, opts);  
  4.            if (bm == null && opts != null && opts.inBitmap != null) {  
  5.                throw new IllegalArgumentException("Problem decoding into existing bitmap");  
  6.            }  
  7.            return finishDecode(bm, outPadding, opts);  
  8.        } else {  
  9.            FileInputStream fis = new FileInputStream(fd);  
  10.            try {  
  11.                return decodeStream(fis, outPadding, opts);  
  12.            } finally {  
  13.                try {  
  14.                    fis.close();  
  15.                } catch (Throwable t) {/* ignore */}  
  16.            }  
  17.        }  
  18.    }  
  19.   
  20. private static native Bitmap nativeDecodeFileDescriptor(FileDescriptor fd,Rect padding, Options opts);  





目录
打赏
0
0
0
0
498
分享
相关文章
快速定位并优化CPU 与 JVM 内存性能瓶颈
本文介绍了 Java 应用常见的 CPU & JVM 内存热点原因及优化思路。
620 166
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
如何快速定位并优化CPU 与 JVM 内存性能瓶颈?
|
10天前
|
Linux系统内存使用优化技巧
交换空间(Swap)的优化 禁用 Swap sudo swapoff -a 作用:这个命令会禁用系统中所有的 Swap 空间。swapoff 命令用于关闭 Swap 空间,-a 参数表示关闭 /etc/fstab 文件中配置的所有 Swap 空间。 使用场景:在高性能应用场景下,比如数据库服务器或高性能计算服务器,禁用 Swap 可以减少磁盘 I/O,提高系统性能。
28 3
如何优化Node.js应用的内存使用以提高性能?
通过以上多种方法的综合运用,可以有效地优化 Node.js 应用的内存使用,提高性能,提升用户体验。同时,不断关注内存管理的最新技术和最佳实践,持续改进应用的性能表现。
185 62
如何使用内存监控工具来优化 Node.js 应用的性能
需要注意的是,不同的内存监控工具可能具有不同的功能和特点,在使用时需要根据具体工具的要求和操作指南进行正确使用和分析。
97 31
深入探索Android系统的内存管理机制
本文旨在全面解析Android系统的内存管理机制,包括其工作原理、常见问题及其解决方案。通过对Android内存模型的深入分析,本文将帮助开发者更好地理解内存分配、回收以及优化策略,从而提高应用性能和用户体验。
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
297 7
Java 内存管理与优化:掌控堆与栈,雕琢高效代码
Java内存管理与优化是提升程序性能的关键。掌握堆与栈的运作机制,学习如何有效管理内存资源,雕琢出更加高效的代码,是每个Java开发者必备的技能。
107 5
深入探讨Android系统的内存管理机制
本文将深入分析Android系统的内存管理机制,包括其内存分配、回收策略以及常见的内存泄漏问题。通过对这些方面的详细讨论,读者可以更好地理解Android系统如何高效地管理内存资源,从而提高应用程序的性能和稳定性。
134 16

热门文章

最新文章

  • 1
    android FragmentManager 删除所有Fragment 重建
    18
  • 2
    Android实战经验之Kotlin中快速实现MVI架构
    31
  • 3
    即时通讯安全篇(一):正确地理解和使用Android端加密算法
    36
  • 4
    escrcpy:【技术党必看】Android开发,Escrcpy 让你无线投屏新体验!图形界面掌控 Android,30-120fps 超流畅!🔥
    43
  • 5
    【01】噩梦终结flutter配安卓android鸿蒙harmonyOS 以及next调试环境配鸿蒙和ios真机调试环境-flutter项目安卓环境配置-gradle-agp-ndkVersion模拟器运行真机测试环境-本地环境搭建-如何快速搭建android本地运行环境-优雅草卓伊凡-很多人在这步就被难倒了
    147
  • 6
    Cellebrite UFED 4PC 7.71 (Windows) - Android 和 iOS 移动设备取证软件
    47
  • 7
    【03】仿站技术之python技术,看完学会再也不用去购买收费工具了-修改整体页面做好安卓下载发给客户-并且开始提交网站公安备案-作为APP下载落地页文娱产品一定要备案-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
    59
  • 8
    Android历史版本与APK文件结构
    164
  • 9
    【02】仿站技术之python技术,看完学会再也不用去购买收费工具了-本次找了小影-感觉页面很好看-本次是爬取vue需要用到Puppeteer库用node.js扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-优雅草卓伊凡
    48
  • 10
    【01】仿站技术之python技术,看完学会再也不用去购买收费工具了-用python扒一个app下载落地页-包括安卓android下载(简单)-ios苹果plist下载(稍微麻烦一丢丢)-客户的麻将软件需要下载落地页并且要做搜索引擎推广-本文用python语言快速开发爬取落地页下载-优雅草卓伊凡
    42
  • AI助理

    你好,我是AI助理

    可以解答问题、推荐解决方案等