Linux内核-容器之namespace

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feilengcui008/article/details/51628366 1. 介绍简单玩了下Linux kernel为容器技术提供的基础设施之一namespace(另一个是cgroups),包括uts/user/pid/mnt/ipc/net六个(3.13.0的内核). 这东西主要用来做资源的隔离,我感觉本质上是全局资源的映射,映射之间独立了自然隔离了。
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/feilengcui008/article/details/51628366

1. 介绍

简单玩了下Linux kernel为容器技术提供的基础设施之一namespace(另一个是cgroups),包括uts/user/pid/mnt/ipc/net六个(3.13.0的内核). 这东西主要用来做资源的隔离,我感觉本质上是全局资源的映射,映射之间独立了自然隔离了。主要涉及到的东西是:

  • clone
  • setns
  • unshare
  • /proc/pid/ns, /proc/pid/uid_map, /proc/pid/gid_map等

后面简单分析了一下内核源码里面是怎么实现这几个namespace以及以几个简单系统调用为例,看看namespace怎么产生影响的,然后简单分析下setns和unshare的实现


2. 测试流程及代码

下面是一些简单的例子,主要测试uts/pid/user/mnt四个namespace的效果,测试代码主要用到三个进程,一个是clone系统调用执行/bin/bash后的进程,也是生成新的子namespace的初始进程,然后是打开/proc/pid/ns下的namespace链接文件,用setns将第二个可执行文件的进程加入/bin/bash的进程的namespace(容器),并让其fork出一个子进程,测试pid namespace的差异。值得注意的几个点:

  • 不同版本的内核setns和unshare对namespace的支持不一样,较老的内核可能只支持ipc/net/uts三个namespace
  • 某个进程创建后其pid namespace就固定了,使用setns和unshare改变后,其本身的pid namespace不会改变,只有fork出的子进程的pid namespace改变(改变的是每个进程的nsproxy->pid_namespace_for_children)
  • 用setns添加mnt namespace应该放在其他namespace之后,否则可能出现无法打开/proc/pid/ns/…的错误
// 代码1: 开一些新的namespace(启动新容器)
#define _GNU_SOURCE
#include <sys/wait.h>
#include <sched.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

#define errExit(msg)  do { perror(msg); exit(EXIT_FAILURE); \
} while (0)

/* Start function for cloned child */
static int childFunc(void *arg)
{
  const char *binary = "/bin/bash";
  char *const argv[] = {
    "/bin/bash",
    NULL
  };
  char *const envp[] = { NULL };

  /* wrappers for execve */
  // has const char * as argument list
  // execl 
  // execle  => has envp
  // execlp  => need search PATH 

  // has char *const arr[] as argument list 
  // execv 
  // execvpe => need search PATH and has envp
  // execvp  => need search PATH 

  //int ret = execve(binary, argv, envp);
  int ret = execv(binary, argv);
  if (ret < 0) {
    errExit("execve error");
  }
  return ret;
}

#define STACK_SIZE (1024 * 1024)    /* Stack size for cloned child */

int main(int argc, char *argv[])
{
  char *stack; 
  char *stackTop;                 
  pid_t pid;
  stack = malloc(STACK_SIZE);
  if (stack == NULL)
    errExit("malloc");
  stackTop = stack + STACK_SIZE;  /* Assume stack grows downward */

  //pid = clone(childFunc, stackTop, CLONE_NEWUTS | CLONE_NEWNS | CLONE_NEWPID | CLONE_NEWUSER | SIGCHLD, NULL);
  pid = clone(childFunc, stackTop, CLONE_NEWUTS | CLONE_NEWNS | CLONE_NEWPID | CLONE_NEWUSER | CLONE_NEWIPC | SIGCHLD, NULL);
//pid = clone(childFunc, stackTop, CLONE_NEWUTS | //CLONE_NEWNS | CLONE_NEWPID | CLONE_NEWUSER | CLONE_NEWIPC //| CLONE_NEWNET | SIGCHLD, NULL);
  if (pid == -1)
    errExit("clone");
  printf("clone() returned %ld\n", (long) pid);

  if (waitpid(pid, NULL, 0) == -1)  
    errExit("waitpid");
  printf("child has terminated\n");

  exit(EXIT_SUCCESS);
}
// 代码2: 使用setns加入新进程
#define _GNU_SOURCE  // ?
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <errno.h>
#include <sys/utsname.h>
#include <unistd.h>
#include <sys/types.h>
#include <sched.h>
#include <fcntl.h>
#include <wait.h>

// mainly setns and unshare system calls

/* int setns(int fd, int nstype); */

// 不同版本内核/proc/pid/ns下namespace文件情况
/*
   CLONE_NEWCGROUP (since Linux 4.6)
   fd must refer to a cgroup namespace.

   CLONE_NEWIPC (since Linux 3.0)
   fd must refer to an IPC namespace.

   CLONE_NEWNET (since Linux 3.0)
   fd must refer to a network namespace.

   CLONE_NEWNS (since Linux 3.8)
   fd must refer to a mount namespace.

   CLONE_NEWPID (since Linux 3.8)
   fd must refer to a descendant PID namespace.

   CLONE_NEWUSER (since Linux 3.8)
   fd must refer to a user namespace.

   CLONE_NEWUTS (since Linux 3.0)
   fd must refer to a UTS namespace.
   */

/* // 特殊的pid namespace 
   CLONE_NEWPID behaves somewhat differently from the other nstype
values: reassociating the calling thread with a PID namespace changes
only the PID namespace that child processes of the caller will be
created in; it does not change the PID namespace of the caller
itself.  Reassociating with a PID namespace is allowed only if the
PID namespace specified by fd is a descendant (child, grandchild,
etc.)  of the PID namespace of the caller.  For further details on
PID namespaces, see pid_namespaces(7).
*/


/*
int unshare(int flags);
CLONE_FILES | CLONE_FS | CLONE_NEWCGROUP | CLONE_NEWIPC | CLONE_NEWNET 
| CLONE_NEWNS | CLONE_NEWPID | CLONE_NEWUSER | CLONE_NEWUTS | CLONE_SYSVSEM
*/



#define MAX_PROCPATH_LEN 1024

#define errorExit(msg) \
  do { fprintf(stderr, "%s in file %s in line %d\n", msg, __FILE__, __LINE__);\
    exit(EXIT_FAILURE); } while (0)

void printInfo();
int openAndSetns(const char *path);

int main(int argc, char *argv[])
{
  if (argc < 2) {
    fprintf(stdout, "usage : execname pid(find namespaces of this process)\n");
    return 0;
  }
  printInfo();

  fprintf(stdout, "---- setns for uts ----\n");
  char uts[MAX_PROCPATH_LEN];
  snprintf(uts, MAX_PROCPATH_LEN, "/proc/%s/ns/uts", argv[1]);
  openAndSetns(uts);
  printInfo();

  fprintf(stdout, "---- setns for user ----\n");
  char user[MAX_PROCPATH_LEN];
  snprintf(user, MAX_PROCPATH_LEN, "/proc/%s/ns/user", argv[1]);
  openAndSetns(user);
  printInfo();

  // 注意pid namespace的不同行为,只有后续创建的子进程进入setns设置
  // 的新的pid namespace,本进程不会改变
  fprintf(stdout, "---- setns for pid ----\n");
  char pidpath[MAX_PROCPATH_LEN];
  snprintf(pidpath, MAX_PROCPATH_LEN, "/proc/%s/ns/pid", argv[1]);
  openAndSetns(pidpath);
  printInfo();


  fprintf(stdout, "---- setns for ipc ----\n");
  char ipc[MAX_PROCPATH_LEN];
  snprintf(ipc, MAX_PROCPATH_LEN, "/proc/%s/ns/ipc", argv[1]);
  openAndSetns(ipc);
  printInfo();

  fprintf(stdout, "---- setns for net ----\n");
  char net[MAX_PROCPATH_LEN];
  snprintf(net, MAX_PROCPATH_LEN, "/proc/%s/ns/net", argv[1]);
  openAndSetns(net);
  printInfo();

  // 注意mnt namespace需要放在其他后面,避免mnt namespace改变后
  // 找不到/proc/pid/ns下的文件
  fprintf(stdout, "---- setns for mount ----\n");
  char mount[MAX_PROCPATH_LEN];
  snprintf(mount, MAX_PROCPATH_LEN, "/proc/%s/ns/mnt", argv[1]);
  openAndSetns(mount);
  printInfo();

  // 测试子进程的pid namespace
  int ret = fork();
  if (-1 == ret) {
    errorExit("failed to fork");
  } else if (ret == 0) {
    fprintf(stdout, "********\n");
    fprintf(stdout, "in child process\n");
    printInfo();
    fprintf(stdout, "********\n");
    for (;;) {
      sleep(5);
    }
  } else {
    fprintf(stdout, "child pid : %d\n", ret);
  }
  for (;;) {
    sleep(5);
  }
  waitpid(ret, NULL, 0);
  return 0;
}

void printInfo()
{
  pid_t pid;
  struct utsname uts;
  uid_t uid;
  gid_t gid;
  // pid namespace 
  pid = getpid();
  // user namespace 
  uid = getuid();
  gid = getgid();
  // uts namespace 
  uname(&uts);
  fprintf(stdout, "pid : %d\n", pid);
  fprintf(stdout, "uid : %d\n", uid);
  fprintf(stdout, "gid : %d\n", gid);
  fprintf(stdout, "hostname : %s\n", uts.nodename);
}

int openAndSetns(const char *path)
{
  int ret = open(path, O_RDONLY, 0);
  if (-1 == ret) {
    fprintf(stderr, "%s\n", strerror(errno));
    errorExit("failed to open fd");
  }
  if (-1 == (ret = setns(ret, 0))) {
    fprintf(stderr, "%s\n", strerror(errno));
    errorExit("failed to setns");
  }
  return ret;
}

3. 测试效果

  • user的效果 : 通过/proc/pid/uid_map和/proc/pid/gid_map设置container外用户id和容器内用户id的映射关系(把这放前面是因为后面hostname和mount需要权限…)
    这里写图片描述
    这里写图片描述
    这里写图片描述

  • uts的效果 : 改变container中的hostname不会影响container外面的hostname
    这里写图片描述
    这里写图片描述

  • pid和mnt的效果 : container中进程id被重新映射,在container中重新挂载/proc filesystem不会影响容器外的/proc
    这里写图片描述
    这里写图片描述

  • setns的测试

    • 依次为init进程,container init进程(6个namespace的flag都指定了),新加入container的进程以及其fork出的子进程的namespace情况,可以看到container init进程与init进程的namespace完全不同了,新加入container的进程除了pid与init相同外,其他namespace与container init进程相同,而新加入container的进程fork出的子进程的namespace则与container init进程完全相同
      这里写图片描述

    • 新加入container init进程pid namespace的子进程
      这里写图片描述
      这里写图片描述

    • 程序2输出
      这里写图片描述


4. 内核里namespace的实现

(1) 主要数据结构

  • 源码主要位置:
// net_namespace为啥不链接个头文件到include/linux...
include/net/net_namespace.h
include/linux/mnt_namespace.h与fs/mount.h
include/linux/ipc_namespace.h
include/linux/pid_namespace.h
include/linux/user_namespace.h
// 这个命名估计是历史原因...
include/linux/utsname.h
  • 几个namespace结构
    注意其他namespace都内嵌了user_namespace
struct user_namespace {
  // uid_map 
    struct uid_gid_map  uid_map;
  // gid_map
    struct uid_gid_map  gid_map;
    struct uid_gid_map  projid_map;
    atomic_t        count;
  // 父user_namespace
    struct user_namespace   *parent;
    int         level;
    kuid_t          owner;
    kgid_t          group;
    struct ns_common    ns;
    unsigned long       flags;

    /* Register of per-UID persistent keyrings for this namespace */
#ifdef CONFIG_PERSISTENT_KEYRINGS
    struct key      *persistent_keyring_register;
    struct rw_semaphore persistent_keyring_register_sem;
#endif
};
// uts_namespace
struct uts_namespace {
    struct kref kref;
    struct new_utsname name;
    struct user_namespace *user_ns;
    // 封装ns的一些通用操作钩子函数
    struct ns_common ns;
};
// pid_namespace 
struct pid_namespace {
    struct kref kref;
  // pid映射
    struct pidmap pidmap[PIDMAP_ENTRIES];
    struct rcu_head rcu;
    int last_pid;
    unsigned int nr_hashed;
  // pid_namespace里面,子进程挂掉会由此进程rape
    struct task_struct *child_reaper;
    struct kmem_cache *pid_cachep;
    unsigned int level;
  // 父pid_namespace
    struct pid_namespace *parent;
  // 当前namespace在proc fs中的位置
#ifdef CONFIG_PROC_FS
    struct vfsmount *proc_mnt;
    struct dentry *proc_self;
    struct dentry *proc_thread_self;
#endif
#ifdef CONFIG_BSD_PROCESS_ACCT
    struct bsd_acct_struct *bacct;
#endif
  // pid_namespace依赖user_namespace
    struct user_namespace *user_ns;
  // 工作队列workqueue相关
    struct work_struct proc_work;
    kgid_t pid_gid;
    int hide_pid;
    int reboot; /* group exit code if this pidns was rebooted */
  // 封装ns的一些通用操作钩子函数
    struct ns_common ns;
};
// mount namespace
struct mnt_namespace {
    atomic_t        count;
    struct ns_common    ns;
    // 新的mount namespace的根挂载点
    struct mount *  root;
    struct list_head    list;
    // 内嵌的user_namespace
    struct user_namespace   *user_ns;
    u64         seq;    /* Sequence number to prevent loops */
    wait_queue_head_t poll;
    u64 event;
};
struct ipc_namespace {
    atomic_t    count;
    struct ipc_ids  ids[3];

    int     sem_ctls[4];
    int     used_sems;

    unsigned int    msg_ctlmax;
    unsigned int    msg_ctlmnb;
    unsigned int    msg_ctlmni;
    atomic_t    msg_bytes;
    atomic_t    msg_hdrs;

    size_t      shm_ctlmax;
    size_t      shm_ctlall;
    unsigned long   shm_tot;
    int     shm_ctlmni;
    /*
     * Defines whether IPC_RMID is forced for _all_ shm segments regardless
     * of shmctl()
     */
    int     shm_rmid_forced;

    struct notifier_block ipcns_nb;

    /* The kern_mount of the mqueuefs sb.  We take a ref on it */
    struct vfsmount *mq_mnt;

    /* # queues in this ns, protected by mq_lock */
    unsigned int    mq_queues_count;

    /* next fields are set through sysctl */
    unsigned int    mq_queues_max;   /* initialized to DFLT_QUEUESMAX */
    unsigned int    mq_msg_max;      /* initialized to DFLT_MSGMAX */
    unsigned int    mq_msgsize_max;  /* initialized to DFLT_MSGSIZEMAX */
    unsigned int    mq_msg_default;
    unsigned int    mq_msgsize_default;

    /* user_ns which owns the ipc ns */
    struct user_namespace *user_ns;

    struct ns_common ns;
};
struct net {
    atomic_t        passive;    /* To decided when the network
                         * namespace should be freed.
                         */
    atomic_t        count;      /* To decided when the network
                         *  namespace should be shut down.
                         */
#ifdef NETNS_REFCNT_DEBUG
    atomic_t        use_count;  /* To track references we
                         * destroy on demand
                         */
#endif
    spinlock_t      rules_mod_lock;

  // net_namespace链表
    struct list_head    list;       /* list of network namespaces */
    struct list_head    cleanup_list;   /* namespaces on death row */
    struct list_head    exit_list;  /* Use only net_mutex */

  // 内嵌的user_namespace
    struct user_namespace   *user_ns;   /* Owning user namespace */

    struct ns_common    ns;

    struct proc_dir_entry   *proc_net;
    struct proc_dir_entry   *proc_net_stat;
/*... 省略 ...*/

(2) namespace如何产生影响(以uts和pid namespace为例)

  • uts_namespace, 以uname系统调用为例
// syscall uname
SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
{
    int error = 0;

    if (!name)
        return -EFAULT;

    down_read(&uts_sem);
    // utsname()
    if (copy_to_user(name, utsname(), sizeof(*name)))
        error = -EFAULT;
    up_read(&uts_sem);

    if (!error && override_release(name->release, sizeof(name->release)))
        error = -EFAULT;
    if (!error && override_architecture(name))
        error = -EFAULT;
    return error;
}
static inline struct new_utsname *utsname(void)
{
    // 到当前进程uts namespace中查找utsname
    return &current->nsproxy->uts_ns->name;
}
  • pid namespace,以getpid系统调用为例
/**
 * sys_getpid - return the thread group id of the current process
 *
 * Note, despite the name, this returns the tgid not the pid.  The tgid and
 * the pid are identical unless CLONE_THREAD was specified on clone() in
 * which case the tgid is the same in all threads of the same group.
 *
 * This is SMP safe as current->tgid does not change.
 */
SYSCALL_DEFINE0(getpid)
{
    return task_tgid_vnr(current);
}

static inline pid_t task_tgid_vnr(struct task_struct *tsk)
{
    return pid_vnr(task_tgid(tsk));
}
pid_t pid_vnr(struct pid *pid)
{
    return pid_nr_ns(pid, task_active_pid_ns(current));
}
// 从pid namespace中获取真正的pid number nr
pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
{
    struct upid *upid; 
    pid_t nr = 0;
    if (pid && ns->level <= pid->level) {
        upid = &pid->numbers[ns->level];
        if (upid->ns == ns)
            nr = upid->nr;
    }
    return nr;
}
EXPORT_SYMBOL_GPL(pid_nr_ns);

struct upid {
    /* Try to keep pid_chain in the same cacheline as nr for find_vpid */
  // 真正的pid
    int nr;
  // pid_namespace
    struct pid_namespace *ns;
    struct hlist_node pid_chain;
};

// 带有namespace和pid
struct pid
{
    atomic_t count;
    unsigned int level;
    /* lists of tasks that use this pid */
  // 多个线程共享一个pid
    struct hlist_head tasks[PIDTYPE_MAX];
    struct rcu_head rcu;
    struct upid numbers[1];
};
  • setns系统调用的实现
SYSCALL_DEFINE2(setns, int, fd, int, nstype)
{
    struct task_struct *tsk = current;
    struct nsproxy *new_nsproxy;
    struct file *file;
    struct ns_common *ns;
    int err;

    file = proc_ns_fget(fd);
    if (IS_ERR(file))
        return PTR_ERR(file);

    err = -EINVAL;
    ns = get_proc_ns(file_inode(file));
    if (nstype && (ns->ops->type != nstype))
        goto out;

  // 直接为当前进程创建新的nsproxy,然后copy当前进程的namespace到
  // 新创建的nsproxy,最后视引用技术情况将原来的nsproxy放回
  // kmem_cache,是否不太高效?不能直接在原来的nsproxy上
  // install新的ns,没变的namespace不需要更改?不过貌似namespace
  // 不会经常变化,所以对性能要求也不需要很高?
    new_nsproxy = create_new_namespaces(0, tsk, current_user_ns(), tsk->fs);
    if (IS_ERR(new_nsproxy)) {
        err = PTR_ERR(new_nsproxy);
        goto out;
    }

    err = ns->ops->install(new_nsproxy, ns);
    if (err) {
        free_nsproxy(new_nsproxy);
        goto out;
    }
  // 切换当前进程的nsproxy,并可能释放nsproxy
    switch_task_namespaces(tsk, new_nsproxy);
out:
    fput(file);
    return err;
}
static struct nsproxy *create_new_namespaces(unsigned long flags,
    struct task_struct *tsk, struct user_namespace *user_ns,
    struct fs_struct *new_fs)
{
    struct nsproxy *new_nsp;
    int err;
    // 创建新的nsproxy
    new_nsp = create_nsproxy();
    if (!new_nsp)
        return ERR_PTR(-ENOMEM);
    // 分配新的mnt_namespace
    new_nsp->mnt_ns = copy_mnt_ns(flags, tsk->nsproxy->mnt_ns, user_ns, new_fs);
    if (IS_ERR(new_nsp->mnt_ns)) {
        err = PTR_ERR(new_nsp->mnt_ns);
        goto out_ns;
    }
    // 分配新的uts namespace
    new_nsp->uts_ns = copy_utsname(flags, user_ns, tsk->nsproxy->uts_ns);
    if (IS_ERR(new_nsp->uts_ns)) {
        err = PTR_ERR(new_nsp->uts_ns);
        goto out_uts;
    }
    // 分配新的ipc namespace
    new_nsp->ipc_ns = copy_ipcs(flags, user_ns, tsk->nsproxy->ipc_ns);
    if (IS_ERR(new_nsp->ipc_ns)) {
        err = PTR_ERR(new_nsp->ipc_ns);
        goto out_ipc;
    }
    // 注意不同于其他namespace 这里改变的是此进程的子进程的pid namespace
    new_nsp->pid_ns_for_children =
        copy_pid_ns(flags, user_ns, tsk->nsproxy->pid_ns_for_children);
    if (IS_ERR(new_nsp->pid_ns_for_children)) {
        err = PTR_ERR(new_nsp->pid_ns_for_children);
        goto out_pid;
    }
    // 分配新的net
    new_nsp->net_ns = copy_net_ns(flags, user_ns, tsk->nsproxy->net_ns);
    if (IS_ERR(new_nsp->net_ns)) {
        err = PTR_ERR(new_nsp->net_ns);
        goto out_net;
    }
    /*... 省略 ...*/
  • unshare系统调用的实现
// unshare主要也是使用create_new_nsproxy和switch_tasks_namespace
SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
{
    struct fs_struct *fs, *new_fs = NULL;
    struct files_struct *fd, *new_fd = NULL;
    struct cred *new_cred = NULL;
    struct nsproxy *new_nsproxy = NULL;
    /*... 省略 ...*/
    // 内部调用了create_new_nsproxy
    err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
                     new_cred, new_fs);
    /*... 省略 ...*/
    if (new_nsproxy)
       // 切换当前进程的nsproxy到新的nsproxy,
       // 并可能释放nsproxy,nsproxy本身结构放回kmem_cache,
       // 而nsproxy中的uts/ipc/net/user/mnt以及嵌入其他
       // namespace中的user namespace也会根据引用计数释放回slab 
        switch_task_namespaces(current, new_nsproxy);
相关文章
|
16天前
|
Linux C语言
Linux内核队列queue.h
Linux内核队列queue.h
|
1月前
|
存储 Shell Linux
【Shell 命令集合 系统设置 】Linux 生成并更新内核模块的依赖 depmod命令 使用指南
【Shell 命令集合 系统设置 】Linux 生成并更新内核模块的依赖 depmod命令 使用指南
32 0
|
1月前
|
Shell Linux C语言
【Shell 命令集合 系统设置 】⭐Linux 卸载已加载的内核模块rmmod命令 使用指南
【Shell 命令集合 系统设置 】⭐Linux 卸载已加载的内核模块rmmod命令 使用指南
29 1
|
9天前
|
算法 Linux 调度
深入理解Linux内核的进程调度机制
【4月更文挑战第17天】在多任务操作系统中,进程调度是核心功能之一,它决定了处理机资源的分配。本文旨在剖析Linux操作系统内核的进程调度机制,详细讨论其调度策略、调度算法及实现原理,并探讨了其对系统性能的影响。通过分析CFS(完全公平调度器)和实时调度策略,揭示了Linux如何在保证响应速度与公平性之间取得平衡。文章还将评估最新的调度技术趋势,如容器化和云计算环境下的调度优化。
|
14天前
|
算法 Linux 调度
深度解析:Linux内核的进程调度机制
【4月更文挑战第12天】 在多任务操作系统如Linux中,进程调度机制是系统的核心组成部分之一,它决定了处理器资源如何分配给多个竞争的进程。本文深入探讨了Linux内核中的进程调度策略和相关算法,包括其设计哲学、实现原理及对系统性能的影响。通过分析进程调度器的工作原理,我们能够理解操作系统如何平衡效率、公平性和响应性,进而优化系统表现和用户体验。
20 3
|
17天前
|
Linux Shell 虚拟化
linux 部署docker容器虚拟化平台(二)--------docker 镜像制作方法
linux 部署docker容器虚拟化平台(二)--------docker 镜像制作方法
28 0
|
21天前
|
负载均衡 算法 Linux
深度解析:Linux内核调度器的演变与优化策略
【4月更文挑战第5天】 在本文中,我们将深入探讨Linux操作系统的核心组成部分——内核调度器。文章将首先回顾Linux内核调度器的发展历程,从早期的简单轮转调度(Round Robin)到现代的完全公平调度器(Completely Fair Scheduler, CFS)。接着,分析当前CFS面临的挑战以及社区提出的各种优化方案,最后提出未来可能的发展趋势和研究方向。通过本文,读者将对Linux调度器的原理、实现及其优化有一个全面的认识。
|
21天前
|
Ubuntu Linux
Linux查看内核版本
在Linux系统中查看内核版本有多种方法:1) 使用`uname -r`命令直接显示版本号;2) 通过`cat /proc/version`查看内核详细信息;3) 利用`dmesg | grep Linux`显示内核版本行;4) 如果支持,使用`lsb_release -a`查看发行版及内核版本。
36 6
|
24天前
|
Linux 内存技术
Linux内核读取spi-nor flash sn
Linux内核读取spi-nor flash sn
18 1
|
1月前
|
存储 网络协议 Linux
【Linux 解惑 】谈谈你对linux内核的理解
【Linux 解惑 】谈谈你对linux内核的理解
24 0