Linux内核队列queue.h

本文涉及的产品
云数据库 Tair(兼容Redis),内存型 2GB
Redis 开源版,标准版 2GB
推荐场景:
搭建游戏排行榜
简介: Linux内核队列queue.h


一、简介

queue.h是一个非常经典的文件,定义了一系列宏的操作,它定义了一系列的宏操作,实现了链表,尾队列和循环链表。

queue.h定义了5个基本的数据类型:

  • 单向无尾链表
  • 单向有尾链表
  • 双向无尾链表
  • 双向有尾链表
  • 循环链表

queue相关链表/队列的使用流程为:

  1. 定义自己的结构体
  2. 在结构体中使用XXXX_ENTRY定义链表/队列成员变量
  3. 使用XXXX_HEAD定义一个链表/队列头
  4. 使用XXXX_INIT初始化链表/队列头(也可在定义时初始化)
  5. 使用相关的INSERT、REMOVE、FOREACH、REPLACE方法操作队列

几种类型支持的操作:

二、SLIST单向无尾链表

2.1 介绍

SLIST是Singly-linked List的缩写,意为单向无尾链表。

SLIST适合数据量非常大并且几乎不需要删除数据的场合,或者当作堆栈使用。

SLIST相关的源码:

/*
 * Singly-linked List definitions.
 */
#define SLIST_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *slh_first; /* first element */                             \
}
#define SLIST_HEAD_INITIALIZER(head)                                        \
    { NULL }
#define SLIST_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *sle_next;  /* next element */                              \
}
/*
 * Singly-linked List functions.
 */
#define SLIST_INIT(head) do {                                               \
    (head)->slh_first = NULL;                                               \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_AFTER(slistelm, elm, field) do {                       \
    (elm)->field.sle_next = (slistelm)->field.sle_next;                     \
    (slistelm)->field.sle_next = (elm);                                     \
} while (/*CONSTCOND*/0)
#define SLIST_INSERT_HEAD(head, elm, field) do {                            \
    (elm)->field.sle_next = (head)->slh_first;                              \
    (head)->slh_first = (elm);                                              \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE_HEAD(head, field) do {                                 \
    (head)->slh_first = (head)->slh_first->field.sle_next;                  \
} while (/*CONSTCOND*/0)
#define SLIST_REMOVE(head, elm, type, field) do {                           \
    if ((head)->slh_first == (elm)) {                                       \
        SLIST_REMOVE_HEAD((head), field);                                   \
    }                                                                       \
    else {                                                                  \
        struct type *curelm = (head)->slh_first;                            \
        while(curelm->field.sle_next != (elm))                              \
            curelm = curelm->field.sle_next;                                \
        curelm->field.sle_next =                                            \
            curelm->field.sle_next->field.sle_next;                         \
    }                                                                       \
} while (/*CONSTCOND*/0)
#define SLIST_FOREACH(var, head, field)                                     \
    for ((var) = SLIST_FIRST((head));                                       \
        (var);                                                              \
        (var) = SLIST_NEXT((var), field) )
#define SLIST_FOREACH_PREVPTR(var, varp, head, field)                       \
    for ((varp) = &SLIST_FIRST((head));                                     \
        ((var) = *(varp)) != NULL;                                          \
        (varp) = &SLIST_NEXT((var), field) )
/*
 * Singly-linked List access methods.
 */
#define SLIST_EMPTY(head)       ((head)->slh_first == NULL)
#define SLIST_FIRST(head)       ((head)->slh_first)
#define SLIST_NEXT(elm, field)  ((elm)->field.sle_next)

2.2 操作

与单向链表相关的宏、方法和函数有:

// definitions
SLIST_HEAD(name, type)
SLIST_HEAD_INITIALIZER(head)
SLIST_ENTRY(type)
// access methods
SLIST_FIRST(head)
SLIST_END(head)
SLIST_EMPTY(head)
SLIST_NEXT(elm, field)
LIST_FOREACH(var, head, field)
SLIST_FOREACH_PREVPTR(var, varp, head, field)
// functions
SLIST_INIT(head)
SLIST_INSERT_AFTER(slistelm, elm, field)
SLIST_INSERT_HEAD(head, elm, field)
SLIST_REMOVE_NEXT(head, elm, field)
SLIST_REMOVE_HEAD(head, field)
SLIST_REMOVE(head, elm, type, field)

宏定义说明

  • SLIST_HEAD用于定义一个单向链表数据结构体的头变量,该结构体只有一个指针成员slh_first,指向第一个type类型的数据结构;name可以不用(填写);
  • SLIST_HEAD_INITIALIZER用于在定义时初始化SLIST_HEAD定义的数据结构体的头变量;head可以不用填写;
  • SLIST_ENTRY则用于定义一个(用户)结构体的成员变量,该成员变量只包含一个指向type类型的指针sle_next;

与单向链表相关的访问方法有6个

  • SLIST_FIRST用于获取单向链表的第一个元素;
  • SLIST_END定义了尾部的判断标准;
  • SLIST_EMPTY用于判断单向链表是否为空:空则返回true,否则返回false;
  • SLIST_NEXT用于获取elm元素的下一个元素,field是前面用SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH用于遍历单向链表,var是临时变量,head是链表头指针(SLIST_HEAD定义的变量),field是SLIST_ENTRY定义的成员变量名;
  • SLIST_FOREACH_PREVPTR与SLIST_FOREACH类似,用于遍历单向链表,不过提供更多的一个临时指针变量varp,指向var指向元素的地址;

与单向链表相关的函数有6个

  • SLIST_INIT用于初始化SLIST_HEAD定义的头指针变量;当然也可以在使用SLIST_HEAD定义头指针变量时同时使用SLIST_HEAD_INITIALIZER进行初始化;
  • SLIST_INSERT_AFTER用于将元素elm插入到当前链表元素slistelm的后面;
  • SLIST_INSERT_HEAD用于将元素elm插入到当前链表head的头部;head是SLIST_HEAD定义的链表头指针;
  • SLIST_REMOVE_NEXT用于将elm后面的元素删除,head未使用;注意删除时判断elm后面是否还有元素,否则会崩溃;
  • SLIST_REMOVE_HEAD用于删除第一个元素;注意删除时判断head是否为空,否则会崩溃;
  • SLIST_REMOVE用于从head链表中删除elm元素;注意首先判断elm元素是否在head链表中,否则会崩溃;

2.3 例子

#include <stdio.h>
#include <stdlib.h>
#include "queue.h"
struct SLIST_ITEM {
    int value;
    SLIST_ENTRY(SLIST_ITEM) entry;
};
int main(void) {
    int i;
    SLIST_HEAD(,SLIST_ITEM) slist_head;
    SLIST_INIT(&slist_head);
    if (SLIST_EMPTY(&slist_head))
        printf("single list is empty\n");
    struct SLIST_ITEM *item;
    struct SLIST_ITEM *item_temp;
    for( i = 0; i < 10; i += 1)
    {
            item = (struct SLIST_ITEM *)malloc(sizeof(struct SLIST_ITEM));
            item->value = i;
            item->entry.sle_next = NULL;
            SLIST_INSERT_HEAD(&slist_head, item, entry);
    }
    printf("after insert 10 item to single list:\n");
    SLIST_FOREACH(item, &slist_head, entry)
            printf("item value = %d\n", item->value);
    
    while( SLIST_EMPTY(&slist_head) == 0 ){
            item_temp = (&slist_head)->slh_first;
            SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry);
            free(item_temp);
    }
    printf("here");
    if ( SLIST_EMPTY(&slist_head) )
            printf("single list is empty\n");        
    return 0;
}

  • SLIST_INSERT_HEAD(&slist_head, item, entry)
    从头部插入元素,第一个参数为头节点,第一个参数为要插入的元素,第三个参数为自定义结构体中,自定义的SLIST_ENTRY(SLIST_ITEM)结构体变量名称。
  • SLIST_REMOVE(&slist_head,(&slist_head)->slh_first,SLIST_ITEM,entry)
    删除对应元素( 内部仅是指针指向的改变,没有真正释放空间 )

三、STAILQ单向有尾链表

STAILQ 是 Singly-linked Tail queue 的缩写,意为单向有尾链表。有尾链表可作队列使用。

STAILQ相关的源码

/*
 * Singly-linked Tail queue declarations.
 */
#define STAILQ_HEAD(name, type)                                             \
struct name {                                                               \
    struct type *stqh_first;    /* first element */                         \
    struct type **stqh_last;    /* addr of last next element */             \
}
#define STAILQ_HEAD_INITIALIZER(head)                                       \
    { NULL, &(head).stqh_first }
#define STAILQ_ENTRY(type)                                                  \
struct {                                                                    \
    struct type *stqe_next; /* next element */                              \
}
/*
 * Singly-linked Tail queue functions.
 */
#define STAILQ_INIT(head) do {                                              \
    (head)->stqh_first = NULL;                                              \
    (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_HEAD(head, elm, field) do {                           \
    if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)              \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (head)->stqh_first = (elm);                                             \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_TAIL(head, elm, field) do {                           \
    (elm)->field.stqe_next = NULL;                                          \
    *(head)->stqh_last = (elm);                                             \
    (head)->stqh_last = &(elm)->field.stqe_next;                            \
} while (/*CONSTCOND*/0)
#define STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                 \
    if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)      \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
    (listelm)->field.stqe_next = (elm);                                     \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE_HEAD(head, field) do {                                \
    if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
        (head)->stqh_last = &(head)->stqh_first;                            \
} while (/*CONSTCOND*/0)
#define STAILQ_REMOVE(head, elm, type, field) do {                          \
    if ((head)->stqh_first == (elm)) {                                      \
        STAILQ_REMOVE_HEAD((head), field);                                  \
    } else {                                                                \
        struct type *curelm = (head)->stqh_first;                           \
        while (curelm->field.stqe_next != (elm))                            \
            curelm = curelm->field.stqe_next;                               \
        if ((curelm->field.stqe_next =                                      \
            curelm->field.stqe_next->field.stqe_next) == NULL)              \
                (head)->stqh_last = &(curelm)->field.stqe_next;             \
    }                                                                       \
} while (/*CONSTCOND*/0)
#define STAILQ_FOREACH(var, head, field)                                    \
    for ((var) = ((head)->stqh_first);                                      \
        (var);                                                              \
        (var) = ((var)->field.stqe_next))
#define STAILQ_CONCAT(head1, head2) do {                                    \
    if (!STAILQ_EMPTY((head2))) {                                           \
        *(head1)->stqh_last = (head2)->stqh_first;                          \
        (head1)->stqh_last = (head2)->stqh_last;                            \
        STAILQ_INIT((head2));                                               \
    }                                                                       \
} while (/*CONSTCOND*/0)
/*
 * Singly-linked Tail queue access methods.
 */
#define STAILQ_EMPTY(head)          ((head)->stqh_first == NULL)
#define STAILQ_FIRST(head)          ((head)->stqh_first)
#define STAILQ_NEXT(elm, field)     ((elm)->field.stqe_next)

四、LIST双向无尾链表

双向链表有前向的指针,因此可以执行一些前向操作,而且无需遍历链表便可以删除一些节点。

LIST相关的源码

/*
 * List definitions.
 */
#define LIST_HEAD(name, type)                                               \
struct name {                                                               \
    struct type *lh_first;  /* first element */                             \
}
#define LIST_HEAD_INITIALIZER(head)                                         \
    { NULL }
#define LIST_ENTRY(type)                                                    \
struct {                                                                    \
    struct type *le_next;   /* next element */                              \
    struct type **le_prev;  /* address of previous next element */          \
}
/*
 * List functions.
 */
#define LIST_INIT(head) do {                                                \
    (head)->lh_first = NULL;                                                \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_AFTER(listelm, elm, field) do {                         \
    if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)          \
        (listelm)->field.le_next->field.le_prev =                           \
            &(elm)->field.le_next;                                          \
    (listelm)->field.le_next = (elm);                                       \
    (elm)->field.le_prev = &(listelm)->field.le_next;                       \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
    (elm)->field.le_prev = (listelm)->field.le_prev;                        \
    (elm)->field.le_next = (listelm);                                       \
    *(listelm)->field.le_prev = (elm);                                      \
    (listelm)->field.le_prev = &(elm)->field.le_next;                       \
} while (/*CONSTCOND*/0)
#define LIST_INSERT_HEAD(head, elm, field) do {                             \
    if (((elm)->field.le_next = (head)->lh_first) != NULL)                  \
        (head)->lh_first->field.le_prev = &(elm)->field.le_next;            \
    (head)->lh_first = (elm);                                               \
    (elm)->field.le_prev = &(head)->lh_first;                               \
} while (/*CONSTCOND*/0)
#define LIST_REMOVE(elm, field) do {                                        \
    if ((elm)->field.le_next != NULL)                                       \
        (elm)->field.le_next->field.le_prev =                               \
            (elm)->field.le_prev;                                           \
    *(elm)->field.le_prev = (elm)->field.le_next;                           \
} while (/*CONSTCOND*/0)
#define LIST_FOREACH(var, head, field)                                      \
    for ((var) = ((head)->lh_first);                                        \
        (var);                                                              \
        (var) = ((var)->field.le_next))
/*
 * List access methods.
 */
#define LIST_EMPTY(head)        ((head)->lh_first == NULL)
#define LIST_FIRST(head)        ((head)->lh_first)
#define LIST_NEXT(elm, field)   ((elm)->field.le_next)

五、TAILQ双向有尾链表

TAILQ 是 Tail queue 的缩写,意为双向有尾链表。

有尾链表可作队列使用。

双向有尾链表兼具了双向链表和有尾链表的特点。

TAILQ相关的源码

/*
 * Tail queue definitions.
 */
#define TAILQ_HEAD(name, type)                                              \
struct name {                                                               \
    struct type *tqh_first;     /* first element */                         \
    struct type **tqh_last;     /* addr of last next element */             \
}
#define TAILQ_HEAD_INITIALIZER(head)                                        \
    { NULL, &(head).tqh_first }
#define TAILQ_ENTRY(type)                                                   \
struct {                                                                    \
    struct type *tqe_next;      /* next element */                          \
    struct type **tqe_prev;     /* address of previous next element */      \
}
/*
 * Tail queue functions.
 */
#define TAILQ_INIT(head) do {                                               \
    (head)->tqh_first = NULL;                                               \
    (head)->tqh_last = &(head)->tqh_first;                                  \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_HEAD(head, elm, field) do {                            \
    if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)                \
        (head)->tqh_first->field.tqe_prev = &(elm)->field.tqe_next;         \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (head)->tqh_first = (elm);                                              \
    (elm)->field.tqe_prev = &(head)->tqh_first;                             \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_TAIL(head, elm, field) do {                            \
    (elm)->field.tqe_next = NULL;                                           \
    (elm)->field.tqe_prev = (head)->tqh_last;                               \
    *(head)->tqh_last = (elm);                                              \
    (head)->tqh_last = &(elm)->field.tqe_next;                              \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                  \
    if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)        \
        (elm)->field.tqe_next->field.tqe_prev = &(elm)->field.tqe_next;     \
    else                                                                    \
        (head)->tqh_last = &(elm)->field.tqe_next;                          \
    (listelm)->field.tqe_next = (elm);                                      \
    (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)
#define TAILQ_INSERT_BEFORE(listelm, elm, field) do {                       \
    (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                      \
    (elm)->field.tqe_next = (listelm);                                      \
    *(listelm)->field.tqe_prev = (elm);                                     \
    (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                     \
} while (/*CONSTCOND*/0)
#define TAILQ_REMOVE(head, elm, field) do {                                 \
    if (((elm)->field.tqe_next) != NULL)                                    \
        (elm)->field.tqe_next->field.tqe_prev = (elm)->field.tqe_prev;      \
    else                                                                    \
        (head)->tqh_last = (elm)->field.tqe_prev;                           \
    *(elm)->field.tqe_prev = (elm)->field.tqe_next;                         \
} while (/*CONSTCOND*/0)
#define TAILQ_FOREACH(var, head, field)                                     \
    for ((var) = ((head)->tqh_first);                                       \
        (var);                                                              \
        (var) = ((var)->field.tqe_next))
#define TAILQ_FOREACH_REVERSE(var, head, headname, field)                   \
    for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));    \
        (var);                                                              \
        (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define TAILQ_CONCAT(head1, head2, field) do {                              \
    if (!TAILQ_EMPTY(head2)) {                                              \
        *(head1)->tqh_last = (head2)->tqh_first;                            \
        (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;             \
        (head1)->tqh_last = (head2)->tqh_last;                              \
        TAILQ_INIT((head2));                                                \
    }                                                                       \
} while (/*CONSTCOND*/0)
/*
 * Tail queue access methods.
 */
#define TAILQ_EMPTY(head)       ((head)->tqh_first == NULL)
#define TAILQ_FIRST(head)       ((head)->tqh_first)
#define TAILQ_NEXT(elm, field)  ((elm)->field.tqe_next)
#define TAILQ_LAST(head, headname)                                          \
    (*(((struct headname *)((head)->tqh_last))->tqh_last))
#define TAILQ_PREV(elm, headname, field)                                    \
    (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))

六、CIRCLEQ循环链表

CIRCLEQ 是 Circular queue 的缩写,意为循环链表。

CIRCLEQ相关的源码

/*
 * Circular queue definitions.
 */
#define CIRCLEQ_HEAD(name, type)                                            \
struct name {                                                               \
    struct type *cqh_first;     /* first element */                         \
    struct type *cqh_last;      /* last element */                          \
}
#define CIRCLEQ_HEAD_INITIALIZER(head)                                      \
    { (void *)&head, (void *)&head }
#define CIRCLEQ_ENTRY(type)                                                 \
struct {                                                                    \
    struct type *cqe_next;      /* next element */                          \
    struct type *cqe_prev;      /* previous element */                      \
}
/*
 * Circular queue functions.
 */
#define CIRCLEQ_INIT(head) do {                                             \
    (head)->cqh_first = (void *)(head);                                     \
    (head)->cqh_last = (void *)(head);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
    (elm)->field.cqe_next = (listelm)->field.cqe_next;                      \
    (elm)->field.cqe_prev = (listelm);                                      \
    if ((listelm)->field.cqe_next == (void *)(head))                        \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (listelm)->field.cqe_next->field.cqe_prev = (elm);                  \
    (listelm)->field.cqe_next = (elm);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {               \
    (elm)->field.cqe_next = (listelm);                                      \
    (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                      \
    if ((listelm)->field.cqe_prev == (void *)(head))                        \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (listelm)->field.cqe_prev->field.cqe_next = (elm);                  \
    (listelm)->field.cqe_prev = (elm);                                      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_HEAD(head, elm, field) do {                          \
    (elm)->field.cqe_next = (head)->cqh_first;                              \
    (elm)->field.cqe_prev = (void *)(head);                                 \
    if ((head)->cqh_last == (void *)(head))                                 \
        (head)->cqh_last = (elm);                                           \
    else                                                                    \
        (head)->cqh_first->field.cqe_prev = (elm);                          \
    (head)->cqh_first = (elm);                                              \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_INSERT_TAIL(head, elm, field) do {                          \
    (elm)->field.cqe_next = (void *)(head);                                 \
    (elm)->field.cqe_prev = (head)->cqh_last;                               \
    if ((head)->cqh_first == (void *)(head))                                \
        (head)->cqh_first = (elm);                                          \
    else                                                                    \
        (head)->cqh_last->field.cqe_next = (elm);                           \
    (head)->cqh_last = (elm);                                               \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_REMOVE(head, elm, field) do {                               \
    if ((elm)->field.cqe_next == (void *)(head))                            \
        (head)->cqh_last = (elm)->field.cqe_prev;                           \
    else                                                                    \
        (elm)->field.cqe_next->field.cqe_prev = (elm)->field.cqe_prev;      \
    if ((elm)->field.cqe_prev == (void *)(head))                            \
        (head)->cqh_first = (elm)->field.cqe_next;                          \
    else                                                                    \
        (elm)->field.cqe_prev->field.cqe_next = (elm)->field.cqe_next;      \
} while (/*CONSTCOND*/0)
#define CIRCLEQ_FOREACH(var, head, field)                                   \
    for ((var) = ((head)->cqh_first);                                       \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_next))
#define CIRCLEQ_FOREACH_REVERSE(var, head, field)                           \
    for ((var) = ((head)->cqh_last);                                        \
        (var) != (const void *)(head);                                      \
        (var) = ((var)->field.cqe_prev))
/*
 * Circular queue access methods.
 */
#define CIRCLEQ_EMPTY(head)         ((head)->cqh_first == (void *)(head))
#define CIRCLEQ_FIRST(head)         ((head)->cqh_first)
#define CIRCLEQ_LAST(head)          ((head)->cqh_last)
#define CIRCLEQ_NEXT(elm, field)    ((elm)->field.cqe_next)
#define CIRCLEQ_PREV(elm, field)    ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                 \
    (((elm)->field.cqe_next == (void *)(head))                              \
        ? ((head)->cqh_first)                                               \
        : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                 \
    (((elm)->field.cqe_prev == (void *)(head))                              \
        ? ((head)->cqh_last)                                                \
        : (elm->field.cqe_prev))

七、queue源码

在Linux系统中的路径为:/usr/include/sys/queue.h

也可以通过如下网址查看:https://codebrowser.dev/glibc/glibc/misc/sys/queue.h.html

queue.h

/*
 * Copyright (c) 1991, 1993
 *        The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *        @(#)queue.h        8.5 (Berkeley) 8/20/94
 */
#ifndef        _QUEUE_H_
#define        _QUEUE_H_
/*
 * This file defines five types of data structures: singly-linked lists,
 * lists, simple queues, tail queues, and circular queues.
 *
 * A singly-linked list is headed by a single forward pointer. The
 * elements are singly linked for minimum space and pointer manipulation
 * overhead at the expense of O(n) removal for arbitrary elements. New
 * elements can be added to the list after an existing element or at the
 * head of the list.  Elements being removed from the head of the list
 * should use the explicit macro for this purpose for optimum
 * efficiency. A singly-linked list may only be traversed in the forward
 * direction.  Singly-linked lists are ideal for applications with large
 * datasets and few or no removals or for implementing a LIFO queue.
 *
 * A list is headed by a single forward pointer (or an array of forward
 * pointers for a hash table header). The elements are doubly linked
 * so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before
 * or after an existing element or at the head of the list. A list
 * may only be traversed in the forward direction.
 *
 * A simple queue is headed by a pair of pointers, one the head of the
 * list and the other to the tail of the list. The elements are singly
 * linked to save space, so elements can only be removed from the
 * head of the list. New elements can be added to the list after
 * an existing element, at the head of the list, or at the end of the
 * list. A simple queue may only be traversed in the forward direction.
 *
 * A tail queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or
 * after an existing element, at the head of the list, or at the end of
 * the list. A tail queue may be traversed in either direction.
 *
 * A circle queue is headed by a pair of pointers, one to the head of the
 * list and the other to the tail of the list. The elements are doubly
 * linked so that an arbitrary element can be removed without a need to
 * traverse the list. New elements can be added to the list before or after
 * an existing element, at the head of the list, or at the end of the list.
 * A circle queue may be traversed in either direction, but has a more
 * complex end of list detection.
 *
 * For details on the use of these macros, see the queue(3) manual page.
 */
/*
 * List definitions.
 */
#define        LIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *lh_first;        /* first element */                        \
}
#define        LIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        LIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *le_next;        /* next element */                        \
        struct type **le_prev;        /* address of previous next element */        \
}
/*
 * List functions.
 */
#define        LIST_INIT(head) do {                                                \
        (head)->lh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_AFTER(listelm, elm, field) do {                        \
        if (((elm)->field.le_next = (listelm)->field.le_next) != NULL)        \
                (listelm)->field.le_next->field.le_prev =                \
                    &(elm)->field.le_next;                                \
        (listelm)->field.le_next = (elm);                                \
        (elm)->field.le_prev = &(listelm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.le_prev = (listelm)->field.le_prev;                \
        (elm)->field.le_next = (listelm);                                \
        *(listelm)->field.le_prev = (elm);                                \
        (listelm)->field.le_prev = &(elm)->field.le_next;                \
} while (/*CONSTCOND*/0)
#define        LIST_INSERT_HEAD(head, elm, field) do {                                \
        if (((elm)->field.le_next = (head)->lh_first) != NULL)                \
                (head)->lh_first->field.le_prev = &(elm)->field.le_next;\
        (head)->lh_first = (elm);                                        \
        (elm)->field.le_prev = &(head)->lh_first;                        \
} while (/*CONSTCOND*/0)
#define        LIST_REMOVE(elm, field) do {                                        \
        if ((elm)->field.le_next != NULL)                                \
                (elm)->field.le_next->field.le_prev =                         \
                    (elm)->field.le_prev;                                \
        *(elm)->field.le_prev = (elm)->field.le_next;                        \
} while (/*CONSTCOND*/0)
#define        LIST_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->lh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.le_next))
/*
 * List access methods.
 */
#define        LIST_EMPTY(head)                ((head)->lh_first == NULL)
#define        LIST_FIRST(head)                ((head)->lh_first)
#define        LIST_NEXT(elm, field)                ((elm)->field.le_next)
/*
 * Singly-linked List definitions.
 */
#define        SLIST_HEAD(name, type)                                                \
struct name {                                                                \
        struct type *slh_first;        /* first element */                        \
}
#define        SLIST_HEAD_INITIALIZER(head)                                        \
        { NULL }
#define        SLIST_ENTRY(type)                                                \
struct {                                                                \
        struct type *sle_next;        /* next element */                        \
}
/*
 * Singly-linked List functions.
 */
#define        SLIST_INIT(head) do {                                                \
        (head)->slh_first = NULL;                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_AFTER(slistelm, elm, field) do {                        \
        (elm)->field.sle_next = (slistelm)->field.sle_next;                \
        (slistelm)->field.sle_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SLIST_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.sle_next = (head)->slh_first;                        \
        (head)->slh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE_HEAD(head, field) do {                                \
        (head)->slh_first = (head)->slh_first->field.sle_next;                \
} while (/*CONSTCOND*/0)
#define        SLIST_REMOVE(head, elm, type, field) do {                        \
        if ((head)->slh_first == (elm)) {                                \
                SLIST_REMOVE_HEAD((head), field);                        \
        }                                                                \
        else {                                                                \
                struct type *curelm = (head)->slh_first;                \
                while(curelm->field.sle_next != (elm))                        \
                        curelm = curelm->field.sle_next;                \
                curelm->field.sle_next =                                \
                    curelm->field.sle_next->field.sle_next;                \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SLIST_FOREACH(var, head, field)                                        \
        for((var) = (head)->slh_first; (var); (var) = (var)->field.sle_next)
/*
 * Singly-linked List access methods.
 */
#define        SLIST_EMPTY(head)        ((head)->slh_first == NULL)
#define        SLIST_FIRST(head)        ((head)->slh_first)
#define        SLIST_NEXT(elm, field)        ((elm)->field.sle_next)
/*
 * Singly-linked Tail queue declarations.
 */
#define        STAILQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *stqh_first;        /* first element */                        \
        struct type **stqh_last;        /* addr of last next element */                \
}
#define        STAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).stqh_first }
#define        STAILQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *stqe_next;        /* next element */                        \
}
/*
 * Singly-linked Tail queue functions.
 */
#define        STAILQ_INIT(head) do {                                                \
        (head)->stqh_first = NULL;                                        \
        (head)->stqh_last = &(head)->stqh_first;                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.stqe_next = (head)->stqh_first) == NULL)        \
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (head)->stqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.stqe_next = NULL;                                        \
        *(head)->stqh_last = (elm);                                        \
        (head)->stqh_last = &(elm)->field.stqe_next;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.stqe_next = (listelm)->field.stqe_next) == NULL)\
                (head)->stqh_last = &(elm)->field.stqe_next;                \
        (listelm)->field.stqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->stqh_first = (head)->stqh_first->field.stqe_next) == NULL) \
                (head)->stqh_last = &(head)->stqh_first;                        \
} while (/*CONSTCOND*/0)
#define        STAILQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->stqh_first == (elm)) {                                \
                STAILQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->stqh_first;                \
                while (curelm->field.stqe_next != (elm))                        \
                        curelm = curelm->field.stqe_next;                \
                if ((curelm->field.stqe_next =                                \
                        curelm->field.stqe_next->field.stqe_next) == NULL) \
                            (head)->stqh_last = &(curelm)->field.stqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        STAILQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->stqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.stqe_next))
#define        STAILQ_CONCAT(head1, head2) do {                                \
        if (!STAILQ_EMPTY((head2))) {                                        \
                *(head1)->stqh_last = (head2)->stqh_first;                \
                (head1)->stqh_last = (head2)->stqh_last;                \
                STAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Singly-linked Tail queue access methods.
 */
#define        STAILQ_EMPTY(head)        ((head)->stqh_first == NULL)
#define        STAILQ_FIRST(head)        ((head)->stqh_first)
#define        STAILQ_NEXT(elm, field)        ((elm)->field.stqe_next)
/*
 * Simple queue definitions.
 */
#define        SIMPLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *sqh_first;        /* first element */                        \
        struct type **sqh_last;        /* addr of last next element */                \
}
#define        SIMPLEQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).sqh_first }
#define        SIMPLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *sqe_next;        /* next element */                        \
}
/*
 * Simple queue functions.
 */
#define        SIMPLEQ_INIT(head) do {                                                \
        (head)->sqh_first = NULL;                                        \
        (head)->sqh_last = &(head)->sqh_first;                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.sqe_next = (head)->sqh_first) == NULL)        \
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (head)->sqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.sqe_next = NULL;                                        \
        *(head)->sqh_last = (elm);                                        \
        (head)->sqh_last = &(elm)->field.sqe_next;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\
                (head)->sqh_last = &(elm)->field.sqe_next;                \
        (listelm)->field.sqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE_HEAD(head, field) do {                                \
        if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \
                (head)->sqh_last = &(head)->sqh_first;                        \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_REMOVE(head, elm, type, field) do {                        \
        if ((head)->sqh_first == (elm)) {                                \
                SIMPLEQ_REMOVE_HEAD((head), field);                        \
        } else {                                                        \
                struct type *curelm = (head)->sqh_first;                \
                while (curelm->field.sqe_next != (elm))                        \
                        curelm = curelm->field.sqe_next;                \
                if ((curelm->field.sqe_next =                                \
                        curelm->field.sqe_next->field.sqe_next) == NULL) \
                            (head)->sqh_last = &(curelm)->field.sqe_next; \
        }                                                                \
} while (/*CONSTCOND*/0)
#define        SIMPLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->sqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.sqe_next))
/*
 * Simple queue access methods.
 */
#define        SIMPLEQ_EMPTY(head)                ((head)->sqh_first == NULL)
#define        SIMPLEQ_FIRST(head)                ((head)->sqh_first)
#define        SIMPLEQ_NEXT(elm, field)        ((elm)->field.sqe_next)
/*
 * Tail queue definitions.
 */
#define        _TAILQ_HEAD(name, type, qual)                                        \
struct name {                                                                \
        qual type *tqh_first;                /* first element */                \
        qual type *qual *tqh_last;        /* addr of last next element */        \
}
#define TAILQ_HEAD(name, type)        _TAILQ_HEAD(name, struct type,)
#define        TAILQ_HEAD_INITIALIZER(head)                                        \
        { NULL, &(head).tqh_first }
#define        _TAILQ_ENTRY(type, qual)                                        \
struct {                                                                \
        qual type *tqe_next;                /* next element */                \
        qual type *qual *tqe_prev;        /* address of previous next element */\
}
#define TAILQ_ENTRY(type)        _TAILQ_ENTRY(struct type,)
/*
 * Tail queue functions.
 */
#define        TAILQ_INIT(head) do {                                                \
        (head)->tqh_first = NULL;                                        \
        (head)->tqh_last = &(head)->tqh_first;                                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_HEAD(head, elm, field) do {                        \
        if (((elm)->field.tqe_next = (head)->tqh_first) != NULL)        \
                (head)->tqh_first->field.tqe_prev =                        \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (head)->tqh_first = (elm);                                        \
        (elm)->field.tqe_prev = &(head)->tqh_first;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.tqe_next = NULL;                                        \
        (elm)->field.tqe_prev = (head)->tqh_last;                        \
        *(head)->tqh_last = (elm);                                        \
        (head)->tqh_last = &(elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    &(elm)->field.tqe_next;                                \
        else                                                                \
                (head)->tqh_last = &(elm)->field.tqe_next;                \
        (listelm)->field.tqe_next = (elm);                                \
        (elm)->field.tqe_prev = &(listelm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_INSERT_BEFORE(listelm, elm, field) do {                        \
        (elm)->field.tqe_prev = (listelm)->field.tqe_prev;                \
        (elm)->field.tqe_next = (listelm);                                \
        *(listelm)->field.tqe_prev = (elm);                                \
        (listelm)->field.tqe_prev = &(elm)->field.tqe_next;                \
} while (/*CONSTCOND*/0)
#define        TAILQ_REMOVE(head, elm, field) do {                                \
        if (((elm)->field.tqe_next) != NULL)                                \
                (elm)->field.tqe_next->field.tqe_prev =                 \
                    (elm)->field.tqe_prev;                                \
        else                                                                \
                (head)->tqh_last = (elm)->field.tqe_prev;                \
        *(elm)->field.tqe_prev = (elm)->field.tqe_next;                        \
} while (/*CONSTCOND*/0)
#define        TAILQ_FOREACH(var, head, field)                                        \
        for ((var) = ((head)->tqh_first);                                \
                (var);                                                        \
                (var) = ((var)->field.tqe_next))
#define        TAILQ_FOREACH_REVERSE(var, head, headname, field)                \
        for ((var) = (*(((struct headname *)((head)->tqh_last))->tqh_last));        \
                (var);                                                        \
                (var) = (*(((struct headname *)((var)->field.tqe_prev))->tqh_last)))
#define        TAILQ_CONCAT(head1, head2, field) do {                                \
        if (!TAILQ_EMPTY(head2)) {                                        \
                *(head1)->tqh_last = (head2)->tqh_first;                \
                (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last;        \
                (head1)->tqh_last = (head2)->tqh_last;                        \
                TAILQ_INIT((head2));                                        \
        }                                                                \
} while (/*CONSTCOND*/0)
/*
 * Tail queue access methods.
 */
#define        TAILQ_EMPTY(head)                ((head)->tqh_first == NULL)
#define        TAILQ_FIRST(head)                ((head)->tqh_first)
#define        TAILQ_NEXT(elm, field)                ((elm)->field.tqe_next)
#define        TAILQ_LAST(head, headname) \
        (*(((struct headname *)((head)->tqh_last))->tqh_last))
#define        TAILQ_PREV(elm, headname, field) \
        (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last))
/*
 * Circular queue definitions.
 */
#define        CIRCLEQ_HEAD(name, type)                                        \
struct name {                                                                \
        struct type *cqh_first;                /* first element */                \
        struct type *cqh_last;                /* last element */                \
}
#define        CIRCLEQ_HEAD_INITIALIZER(head)                                        \
        { (void *)&head, (void *)&head }
#define        CIRCLEQ_ENTRY(type)                                                \
struct {                                                                \
        struct type *cqe_next;                /* next element */                \
        struct type *cqe_prev;                /* previous element */                \
}
/*
 * Circular queue functions.
 */
#define        CIRCLEQ_INIT(head) do {                                                \
        (head)->cqh_first = (void *)(head);                                \
        (head)->cqh_last = (void *)(head);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_AFTER(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm)->field.cqe_next;                \
        (elm)->field.cqe_prev = (listelm);                                \
        if ((listelm)->field.cqe_next == (void *)(head))                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_next->field.cqe_prev = (elm);        \
        (listelm)->field.cqe_next = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_BEFORE(head, listelm, elm, field) do {                \
        (elm)->field.cqe_next = (listelm);                                \
        (elm)->field.cqe_prev = (listelm)->field.cqe_prev;                \
        if ((listelm)->field.cqe_prev == (void *)(head))                \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (listelm)->field.cqe_prev->field.cqe_next = (elm);        \
        (listelm)->field.cqe_prev = (elm);                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_HEAD(head, elm, field) do {                        \
        (elm)->field.cqe_next = (head)->cqh_first;                        \
        (elm)->field.cqe_prev = (void *)(head);                                \
        if ((head)->cqh_last == (void *)(head))                                \
                (head)->cqh_last = (elm);                                \
        else                                                                \
                (head)->cqh_first->field.cqe_prev = (elm);                \
        (head)->cqh_first = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_INSERT_TAIL(head, elm, field) do {                        \
        (elm)->field.cqe_next = (void *)(head);                                \
        (elm)->field.cqe_prev = (head)->cqh_last;                        \
        if ((head)->cqh_first == (void *)(head))                        \
                (head)->cqh_first = (elm);                                \
        else                                                                \
                (head)->cqh_last->field.cqe_next = (elm);                \
        (head)->cqh_last = (elm);                                        \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_REMOVE(head, elm, field) do {                                \
        if ((elm)->field.cqe_next == (void *)(head))                        \
                (head)->cqh_last = (elm)->field.cqe_prev;                \
        else                                                                \
                (elm)->field.cqe_next->field.cqe_prev =                        \
                    (elm)->field.cqe_prev;                                \
        if ((elm)->field.cqe_prev == (void *)(head))                        \
                (head)->cqh_first = (elm)->field.cqe_next;                \
        else                                                                \
                (elm)->field.cqe_prev->field.cqe_next =                        \
                    (elm)->field.cqe_next;                                \
} while (/*CONSTCOND*/0)
#define        CIRCLEQ_FOREACH(var, head, field)                                \
        for ((var) = ((head)->cqh_first);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_next))
#define        CIRCLEQ_FOREACH_REVERSE(var, head, field)                        \
        for ((var) = ((head)->cqh_last);                                \
                (var) != (const void *)(head);                                \
                (var) = ((var)->field.cqe_prev))
/*
 * Circular queue access methods.
 */
#define        CIRCLEQ_EMPTY(head)                ((head)->cqh_first == (void *)(head))
#define        CIRCLEQ_FIRST(head)                ((head)->cqh_first)
#define        CIRCLEQ_LAST(head)                ((head)->cqh_last)
#define        CIRCLEQ_NEXT(elm, field)        ((elm)->field.cqe_next)
#define        CIRCLEQ_PREV(elm, field)        ((elm)->field.cqe_prev)
#define CIRCLEQ_LOOP_NEXT(head, elm, field)                                \
        (((elm)->field.cqe_next == (void *)(head))                        \
            ? ((head)->cqh_first)                                        \
            : (elm->field.cqe_next))
#define CIRCLEQ_LOOP_PREV(head, elm, field)                                \
        (((elm)->field.cqe_prev == (void *)(head))                        \
            ? ((head)->cqh_last)                                        \
            : (elm->field.cqe_prev))
#endif        /* sys/queue.h */

参考

  1. https://www.codeleading.com/article/52881355491/
  2. https://blog.csdn.net/tissar/article/details/86978743
相关实践学习
基于Redis实现在线游戏积分排行榜
本场景将介绍如何基于Redis数据库实现在线游戏中的游戏玩家积分排行榜功能。
云数据库 Redis 版使用教程
云数据库Redis版是兼容Redis协议标准的、提供持久化的内存数据库服务,基于高可靠双机热备架构及可无缝扩展的集群架构,满足高读写性能场景及容量需弹性变配的业务需求。 产品详情:https://www.aliyun.com/product/kvstore &nbsp; &nbsp; ------------------------------------------------------------------------- 阿里云数据库体验:数据库上云实战 开发者云会免费提供一台带自建MySQL的源数据库&nbsp;ECS 实例和一台目标数据库&nbsp;RDS实例。跟着指引,您可以一步步实现将ECS自建数据库迁移到目标数据库RDS。 点击下方链接,领取免费ECS&amp;RDS资源,30分钟完成数据库上云实战!https://developer.aliyun.com/adc/scenario/51eefbd1894e42f6bb9acacadd3f9121?spm=a2c6h.13788135.J_3257954370.9.4ba85f24utseFl
相关文章
|
10天前
|
安全 Linux 编译器
探索Linux内核的奥秘:从零构建操作系统####
本文旨在通过深入浅出的方式,带领读者踏上一段从零开始构建简化版Linux操作系统的旅程。我们将避开复杂的技术细节,以通俗易懂的语言,逐步揭开Linux内核的神秘面纱,探讨其工作原理、核心组件及如何通过实践加深理解。这既是一次对操作系统原理的深刻洞察,也是一场激发创新思维与实践能力的冒险。 ####
|
3天前
|
缓存 Linux
揭秘Linux内核:探索CPU拓扑结构
【10月更文挑战第26天】
16 1
|
3天前
|
缓存 运维 Linux
深入探索Linux内核:CPU拓扑结构探测
【10月更文挑战第18天】在现代计算机系统中,CPU的拓扑结构对性能优化和资源管理至关重要。了解CPU的核心、线程、NUMA节点等信息,可以帮助开发者和系统管理员更好地调优应用程序和系统配置。本文将深入探讨如何在Linux内核中探测CPU拓扑结构,介绍相关工具和方法。
7 0
|
12天前
|
网络协议 Linux 调度
深入探索Linux操作系统的心脏:内核与系统调用####
本文旨在揭开Linux操作系统中最为核心的部分——内核与系统调用的神秘面纱,通过生动形象的语言和比喻,让读者仿佛踏上了一段奇妙的旅程,从宏观到微观,逐步深入了解这两个关键组件如何协同工作,支撑起整个操作系统的运行。不同于传统的技术解析,本文将以故事化的方式,带领读者领略Linux内核的精妙设计与系统调用的魅力所在,即便是对技术细节不甚了解的读者也能轻松享受这次知识之旅。 ####
|
9天前
|
缓存 算法 安全
深入理解Linux操作系统的心脏:内核与系统调用####
【10月更文挑战第20天】 本文将带你探索Linux操作系统的核心——其强大的内核和高效的系统调用机制。通过深入浅出的解释,我们将揭示这些技术是如何协同工作以支撑起整个系统的运行,同时也会触及一些常见的误解和背后的哲学思想。无论你是开发者、系统管理员还是普通用户,了解这些基础知识都将有助于你更好地利用Linux的强大功能。 ####
18 1
|
10天前
|
缓存 编解码 监控
深入探索Linux内核调度机制的奥秘###
【10月更文挑战第19天】 本文旨在以通俗易懂的语言,深入浅出地剖析Linux操作系统内核中的进程调度机制,揭示其背后的设计哲学与实现策略。我们将从基础概念入手,逐步揭开Linux调度策略的神秘面纱,探讨其如何高效、公平地管理系统资源,以及这些机制对系统性能和用户体验的影响。通过本文,您将获得关于Linux调度机制的全新视角,理解其在日常计算中扮演的关键角色。 ###
34 1
|
17天前
|
网络协议 Linux 芯片
Linux 内核 6.11 RC6 发布!
【10月更文挑战第12天】
81 0
Linux 内核 6.11 RC6 发布!
|
2月前
|
存储 安全 Linux
探索Linux操作系统的心脏:内核
在这篇文章中,我们将深入探讨Linux操作系统的核心—内核。通过简单易懂的语言和比喻,我们会发现内核是如何像心脏一样为系统提供动力,处理数据,并保持一切顺畅运行。从文件系统的管理到进程调度,再到设备驱动,我们将一探究竟,看看内核是怎样支撑起整个操作系统的大厦。无论你是计算机新手还是资深用户,这篇文章都将带你领略Linux内核的魅力,让你对这台复杂机器的内部运作有一个清晰的认识。
74 3
|
2月前
|
缓存 安全 Unix
Linux 内核黑客不可靠指南【ChatGPT】
Linux 内核黑客不可靠指南【ChatGPT】
|
2月前
|
Linux 开发者
Linux内核贡献成熟度模型 【ChatGPT】
Linux内核贡献成熟度模型 【ChatGPT】