架构文摘:分布式系统Session一致性问题解析

本文涉及的产品
应用型负载均衡 ALB,每月750个小时 15LCU
传统型负载均衡 CLB,每月750个小时 15LCU
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 一、问题的提出1. 什么是Session?用户使用网站的服务,需要使用浏览器与Web服务器进行多次交互。HTTP协议本身是无状态的,需要基于HTTP协议支持会话状态(Session State)的机制。

一、问题的提出

1. 什么是Session?

用户使用网站的服务,需要使用浏览器与Web服务器进行多次交互。HTTP协议本身是无状态的,需要基于HTTP协议支持会话状态(Session State)的机制。具体的实现方式是:在会话开始时,分配一个
唯一的会话标识(SessionID),并通过Cookie将这个标识告诉浏览器,以后每次请求的时候,浏览器都会带上这个会话标识SessionID来告诉Web服务器这个请求是属于哪个会话的。在Web服务器上,各个会话都有独立的存储,保存不同会话的信息。如果遇到禁用Cookie的情况,一般的做法就是把这个会话标识放到URL的参数中。

2. 什么是Session一致性问题?

当Web服务器从一台变为多台时,就会出现Session一致性问题。

如上图所示,当一个带有会话标识的HTTP请求到了Web服务器后,需要在HTTP请求的处理过程中找到对应的会话数据(Session)。但是,现在存在的问题就是:如果我第一次访问网站时请求落到了左边的服务器,那么我的Session就创建在左边的服务器上了,如果我们不做处理,就不能保证接下来的请求每次都落在同一边的服务器上了。这就是Session一致性问题。

二、Session一致性解决方案

1. Session Stiky

在单机的情况下,会话保存在单机上,请求也是由这个机器处理,因此不会有问题。当Web服务器变为多台以后,如果保证同一个会话的请求都在同一个Web服务器上处理,则对该会话来说,与之前单机的情况是一样的。

如果要做到这样,就需要负载均衡器能够根据每次请求的会话标识SessionID来进行请求转发,如下图所示。这种方式称之为Session Stiky方式。

该方案本身非常简单,对于Web服务器来说,该方案和单机的情况是一样的,只是我们在负载均衡器上做了手脚。这个方案可以让同样Session的请求每次都发送到同一个Web服务器来处理,非常利于针对Session进行服务端本地的缓存。

其所存在的问题包括:

  • 如果有一台Web服务器宕机或者重启,则该机器上的会话数据就会丢失。如果会话中有登录状态数据,则用户需要重新登陆。
  • 会话标识是应用层的信息,则负载均衡器要将同一个会话的请求都保存到同一个Web服务器上的话,就需要进行应用层(七层)的解析,这个开销比第四层的交换要大。
  • 负载均衡器变为了一个有状态的节点,要将会话保存到具体Web服务器的映射,因此内存消耗会更大,容灾会更麻烦。

打个比方来说,对于Session Stiky,如果说Web服务器是我们每次吃饭的饭店,会话数据就是我们吃饭用的碗筷。要保证每次吃饭都用自己的碗筷,我就把餐具存在某一家,并且每次都去这家店吃,这是个不错的主意。

2. Session Replication

如果我们继续以去饭店吃饭类比,那么除了前面的方式之外,如果我在每个店都存放一套自己的餐具,就可以更加自由地选择饭店。Session Replication就是这样一种方式,如下图所示。

可以看到,在Session Replication方案中,不再要求负载均衡器来保证同一个会话地多次请求必须到同一个Web服务器上了。而我们的Web服务器之间则增加了会话数据的同步。通过同步就保证了不同Web服务器之间的Session数据的一致。

但是,Session Replication方案也存在一些问题,包括:

  • 同步Session数据造成了网络带宽的开销。只要Session数据有变化,就需要将数据同步到其他所有机器上,机器数越多,同步带来的网络带宽开销就越大。

  • 每台Web服务器都要保存所有的Session数据,如果整个集群的Session数很多的话,每台机器用于保存Session数据的内容占用会很严重。

这就是Session Replication方案。这个方案是靠应用容器来完成Session的复制从而使得应用解决Session问题的,应用本身并不关心这个事情。不过,这个方案并不适合集群机器数多的场景。如果只有几台机器,用该方案是可以的。

3. Session数据集中存储

同样是希望同一个会话的请求可以发到不同的Web服务器上,前面的Session Replication是一种方案,还有一种方案就是把Session数据集中存储起来,然后不同Web服务器从同样的地方来获取Session。其大概的结构如下图所示:

可以看到,与Session Replication方案一样的部分是,会话请求经过负载均衡器后,不会被固定在同样的Web服务器上。不同的地方是,Web服务器之间没有Session数据复制,并且Session数据也不是保存在本机了,而是放在了另一个集中存储的地方。这样,无论是哪台Web服务器,也无论修改的是哪个Session的数据,最终的修改都发生在这个集中存储的地方,而Web服务器使用Session数据时,也是从这个集中存储Session数据的地方来读取。对于Session数据存储的具体方式,可以使用数据库,也可以使用其他分布式存储系统。这个方案解决了Session Replication方案中内存的问题,而对于网络带宽,该方案也比Session Replication要好。

不过,该方案仍存在一些问题,包括:

  • 读写Session数据引入了网络操作,这相对于本机的数据读取来说,问题就在于存在时延和不稳定性,不过由于通信基本发生在内网,问题不大。
  • 如果集中存储Session的机器或者集群存在问题,这就会影响我们的应用。

相对于Session Replication,当Web服务器数量比较大时、Session数比较多的时候,集中存储方案的优势是非常明显的。

对于Cookie Based方案,它对同一个会话的不同请求也是不限制具体处理机器的。与Session Replication和Session数据集中管理的方案不同,这个方案是通过Cookie来传递Session数据的。具体如下图所示。

可以看出,我们的Session数据存放在Cookie中,然后在Web服务器上从Cookie中生成对应的Session数据。这就好比我每次都把自己的碗筷带在身上,这样我去哪家饭店吃饭就可以随意选择了。相对于前面的集中存储,这个方案不会依赖外部的一个存储系统,也就不存在从外部系统获取、写入Session数据的网络时延和不稳定性了。

不过,该方案依然存在不足,包括:

  • Cookie长度限制。由于Cookie是有长度限制的,这也会限制Session数据的长度。
  • 安全性。Session数据本来都是服务器端数据,而这个方案是让这些服务端数据到了外部外部网络及客户端,因此存在安全性的问题。
  • 带宽消耗。这里指的不是内部Web服务器之间的带宽的消耗,而是我们数据中心的整体外部贷款的消耗。
  • 性能消耗。每次HTTP请求和响应都带有Session数据,对Web服务器来说,在同样的处理情况下,响应的结果输出越少,支持的并发请求就会越多。

三、总结

综合而言,上述所有方案都是解决session问题的方案,对于大型网站来说,Session Sticky和Session集中管理是比较好的方案。

目录
相关文章
|
5天前
|
物联网 调度 vr&ar
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
鸿蒙技术分享:HarmonyOS Next 深度解析 随着万物互联时代的到来,华为发布的 HarmonyOS Next 在技术架构和生态体验上实现了重大升级。本文从技术架构、生态优势和开发实践三方面深入探讨其特点,并通过跨设备笔记应用实战案例,展示其强大的分布式能力和多设备协作功能。核心亮点包括新一代微内核架构、统一开发语言 ArkTS 和多模态交互支持。开发者可借助 DevEco Studio 4.0 快速上手,体验高效、灵活的开发过程。 239个字符
150 13
鸿蒙HarmonyOS应用开发 |鸿蒙技术分享HarmonyOS Next 深度解析:分布式能力与跨设备协作实战
|
2天前
|
存储 SpringCloudAlibaba Java
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论。
【SpringCloud Alibaba系列】一文全面解析Zookeeper安装、常用命令、JavaAPI操作、Watch事件监听、分布式锁、集群搭建、核心理论
|
4天前
|
设计模式 存储 算法
分布式系统架构5:限流设计模式
本文是小卷关于分布式系统架构学习的第5篇,重点介绍限流器及4种常见的限流设计模式:流量计数器、滑动窗口、漏桶和令牌桶。限流旨在保护系统免受超额流量冲击,确保资源合理分配。流量计数器简单但存在边界问题;滑动窗口更精细地控制流量;漏桶平滑流量但配置复杂;令牌桶允许突发流量。此外,还简要介绍了分布式限流的概念及实现方式,强调了限流的代价与收益权衡。
38 11
|
6天前
|
设计模式 监控 Java
分布式系统架构4:容错设计模式
这是小卷对分布式系统架构学习的第4篇文章,重点介绍了三种常见的容错设计模式:断路器模式、舱壁隔离模式和重试模式。断路器模式防止服务故障蔓延,舱壁隔离模式通过资源隔离避免全局影响,重试模式提升短期故障下的调用成功率。文章还对比了这些模式的优缺点及适用场景,并解释了服务熔断与服务降级的区别。尽管技术文章阅读量不高,但小卷坚持每日更新以促进个人成长。
30 11
|
8天前
|
消息中间件 存储 安全
分布式系统架构3:服务容错
分布式系统因其复杂性,故障几乎是必然的。那么如何让系统在不可避免的故障中依然保持稳定?本文详细介绍了分布式架构中7种核心的服务容错策略,包括故障转移、快速失败、安全失败等,以及它们在实际业务场景中的应用。无论是支付场景的快速失败,还是日志采集的安全失败,每种策略都有自己的适用领域和优缺点。此外,文章还为技术面试提供了解题思路,助你在关键时刻脱颖而出。掌握这些策略,不仅能提升系统健壮性,还能让你的技术栈更上一层楼!快来深入学习,走向架构师之路吧!
42 11
|
6天前
|
存储 缓存 负载均衡
一致性哈希:解决分布式难题的神奇密钥
一致哈希是一种特殊的哈希算法,用于分布式系统中实现数据的高效、均衡分布。它通过将节点和数据映射到一个虚拟环上,确保在节点增减时只需重定位少量数据,从而提供良好的负载均衡、高扩展性和容错性。相比传统取模方法,一致性哈希能显著减少数据迁移成本,广泛应用于分布式缓存、存储、数据库及微服务架构中,有效提升系统的稳定性和性能。
32 1
|
17天前
|
存储 算法 安全
分布式系统架构1:共识算法Paxos
本文介绍了分布式系统中实现数据一致性的重要算法——Paxos及其改进版Multi Paxos。Paxos算法由Leslie Lamport提出,旨在解决分布式环境下的共识问题,通过提案节点、决策节点和记录节点的协作,确保数据在多台机器间的一致性和可用性。Multi Paxos通过引入主节点选举机制,优化了基本Paxos的效率,减少了网络通信次数,提高了系统的性能和可靠性。文中还简要讨论了数据复制的安全性和一致性保障措施。
33 1
|
25天前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
55 8
|
28天前
|
供应链 算法 安全
深度解析区块链技术的分布式共识机制
深度解析区块链技术的分布式共识机制
48 0
|
21天前
|
弹性计算 API 持续交付
后端服务架构的微服务化转型
本文旨在探讨后端服务从单体架构向微服务架构转型的过程,分析微服务架构的优势和面临的挑战。文章首先介绍单体架构的局限性,然后详细阐述微服务架构的核心概念及其在现代软件开发中的应用。通过对比两种架构,指出微服务化转型的必要性和实施策略。最后,讨论了微服务架构实施过程中可能遇到的问题及解决方案。

推荐镜像

更多