【NLP】干货!Python NLTK结合stanford NLP工具包进行文本处理

本文涉及的产品
NLP自然语言处理_高级版,每接口累计50万次
NLP 自学习平台,3个模型定制额度 1个月
NLP自然语言处理_基础版,每接口每天50万次
简介: 干货!详述Python NLTK下如何使用stanford NLP工具包 作者:白宁超 2016年11月6日19:28:43 摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Speech tag, POS-tag)、命名实体识别(Named Entity Recognition, NER)、句法分析(Syntactic Parse)等各项 NLP 领域的功能。

干货!详述Python NLTK下如何使用stanford NLP工具包

作者:白宁超

2016年11月6日19:28:43

摘要:NLTK是由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Speech tag, POS-tag)、命名实体识别(Named Entity Recognition, NER)、句法分析(Syntactic Parse)等各项 NLP 领域的功能。而Stanford NLP 是由斯坦福大学的 NLP 小组开源的 Java 实现的 NLP 工具包,同样对 NLP 领域的各个问题提供了解决办法。斯坦福大学的 NLP 小组是世界知名的研究小组,能将 NLTK 和 Stanford NLP 这两个工具包结合起来使用,那对于自然语言开发者是再好不过的!在 2004 年 Steve Bird 在 NLTK 中加上了对 Stanford NLP 工具包的支持,通过调用外部的 jar 文件来使用 Stanford NLP 工具包的功能。本分析显得非常方便好用。本文主要介绍NLTK(Natural language Toolkit)下配置安装Stanford NLP ,以及对Standford NLP核心模块进行演示,使读者简单易懂的学习本章知识,后续会继续采用大秦帝国语料对分词、词性标注、命名实体识别、句法分析、句法依存分析进行详细演示。关于python基础知识,可以参看【Python五篇慢慢弹】系列文章本文原创编著,转载注明出处:干货!详述Python NLTK下如何使用stanford NLP工具包

目录


【Python NLP】干货!详述Python NLTK下如何使用stanford NLP工具包(1)

【Python NLP】Python 自然语言处理工具小结(2)

【Python NLP】Python NLTK 走进大秦帝国(3)

【Python NLP】Python NLTK获取文本语料和词汇资源(4)

【Python NLP】Python NLTK处理原始文本(5)

1 NLTK和StandfordNLP简介


NLTK:由宾夕法尼亚大学计算机和信息科学使用python语言实现的一种自然语言工具包,其收集的大量公开数据集、模型上提供了全面、易用的接口,涵盖了分词、词性标注(Part-Of-Speech tag, POS-tag)、命名实体识别(Named Entity Recognition, NER)、句法分析(Syntactic Parse)等各项 NLP 领域的功能。

Stanford NLP:由斯坦福大学的 NLP 小组开源的 Java 实现的 NLP 工具包,同样对 NLP 领域的各个问题提供了解决办法。斯坦福大学的 NLP 小组是世界知名的研究小组,能将 NLTK 和 Stanford NLP 这两个工具包结合起来使用,那对于自然语言开发者是再好不过的!在 2004 年 Steve Bird 在 NLTK 中加上了对 Stanford NLP 工具包的支持,通过调用外部的 jar 文件来使用 Stanford NLP 工具包的功能。本分析显得非常方便好用。

本文在主要介绍NLTK 中提供 Stanford NLP 中的以下几个功能:

  1. 中英文分词: StanfordTokenizer
  2. 中英文词性标注: StanfordPOSTagger
  3. 中英文命名实体识别: StanfordNERTagger
  4. 中英文句法分析: StanfordParser
  5. 中英文依存句法分析: StanfordDependencyParser, StanfordNeuralDependencyParser

2 安装配置过程中注意事项


本文以Python 3.5.2和java version "1.8.0_111"版本进行配置,具体安装需要注意以下几点:

  • Stanford NLP 工具包需要 Java 8 及之后的版本,如果出错请检查 Java 版本
  • 本文的配置都是以 Stanford NLP 3.6.0 为例,如果使用的是其他版本,请注意替换相应的文件名
  • 本文的配置过程以 NLTK 3.2 为例,如果使用 NLTK 3.1,需要注意该旧版本中 StanfordSegmenter 未实现,其余大致相同
  • 下面的配置过程是具体细节可以参照:http://nlp.stanford.edu/software/

3 StandfordNLP必要工具包下载


必要包下载:只需要下载以下3个文件就够了,stanfordNLTK文件里面就是StanfordNLP工具包在NLTK中所依赖的jar包和相关文件

  1. stanfordNLTK :自己将所有需要的包和相关文件已经打包在一起了,下面有具体讲解
  2. Jar1.8 :如果你本机是Java 8以上版本,可以不用下载了
  3. NLTK :这个工具包提供Standford NLP接口

以上文件下载后,Jar如果是1.8的版本可以不用下载,另外两个压缩包下载到本地,解压后拷贝文件夹到你的python安装主路径下,然后cmd进入NLTK下通过python setup.py install即可。后面操作讲路径简单修改即可。(如果不能正常分词等操作,查看python是否是3.2以上版本,java是否是8以后版本,jar环境变量是否配置正确)

StanfordNLTK目录结构如下:(从各个压缩文件已经提取好了,如果读者感兴趣,下面有各个功能的源码文件

  • 分词依赖:stanford-segmenter.jar、 slf4j-api.jar、data文件夹相关子文件
  • 命名实体识别依赖:classifiers、stanford-ner.jar
  • 词性标注依赖:models、stanford-postagger.jar
  • 句法分析依赖:stanford-parser.jar、stanford-parser-3.6.0-models.jar、classifiers
  • 依存语法分析依赖:stanford-parser.jar、stanford-parser-3.6.0-models.jar、classifiers 

压缩包下载和源码分析

  1. 分词压缩包:StanfordSegmenter和StanfordTokenizer:下载stanford-segmenter-2015-12-09.zip (version 3.6.0) 解压获取目录中的 stanford-segmenter-3.6.0.jar 拷贝为 stanford-segmenter.jar和 slf4j-api.jar
  2. 词性标注压缩包:下载stanford-postagger-full-2015-12-09.zip (version 3.6.0) 解压获取stanford-postagger.jar
  3. 命名实体识别压缩包:下载stanford-ner-2015-12-09.zip (version 3.6.0) ,将解压获取stanford-ner.jar和classifiers文件
  4. 句法分析、句法依存分析:下载stanford-parser-full-2015-12-09.zip (version 3.6.0) 解压获取stanford-parser.jar 和 stanford-parser-3.6.0-models.jar

4 StandfordNLP相关核心操作


4.1 分词

StanfordSegmenter 中文分词:下载52nlp改过的NLTK包nltk-develop ,解压后将其拷贝到你的python目录下,进去E:\Python\nltk-develop采用python 编辑器打开setup.py文件,F5运行,输入以下代码:

>>> from nltk.tokenize.stanford_segmenter import StanfordSegmenter
>>> segmenter = StanfordSegmenter(
    path_to_jar=r"E:\tools\stanfordNLTK\jar\stanford-segmenter.jar",
    path_to_slf4j=r"E:\tools\stanfordNLTK\jar\slf4j-api.jar",
    path_to_sihan_corpora_dict=r"E:\tools\stanfordNLTK\jar\data",
    path_to_model=r"E:\tools\stanfordNLTK\jar\data\pku.gz",
    path_to_dict=r"E:\tools\stanfordNLTK\jar\data\dict-chris6.ser.gz"
)
>>> str="我在博客园开了一个博客,我的博客名叫伏草惟存,写了一些自然语言处理的文章。"
>>> result = segmenter.segment(str)
>>> result

执行结果

程序解读StanfordSegmenter 的初始化参数说明:

  • path_to_jar: 用来定位jar包,本程序分词依赖stanford-segmenter.jar(注: 其他所有 Stanford NLP 接口都有 path_to_jar 这个参数。)
  • path_to_slf4j: 用来定位slf4j-api.jar作用于分词
  • path_to_sihan_corpora_dict: 设定为 stanford-segmenter-2015-12-09.zip 解压后目录中的 data 目录, data 目录下有两个可用模型 pkg.gz 和 ctb.gz 需要注意的是,使用 StanfordSegmenter 进行中文分词后,其返回结果并不是 list ,而是一个字符串,各个汉语词汇在其中被空格分隔开。

StanfordTokenizer 英文分词 :相关参考资料

Python 3.5.2 (v3.5.2:4def2a2901a5, Jun 25 2016, 22:01:18) [MSC v.1900 32 bit (Intel)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> from nltk.tokenize import StanfordTokenizer
>>> tokenizer = StanfordTokenizer(path_to_jar=r"E:\tools\stanfordNLTK\jar\stanford-parser.jar")
>>> sent = "Good muffins cost $3.88\nin New York.  Please buy me\ntwo of them.\nThanks."
>>> print(tokenizer.tokenize(sent))
['Good', 'muffins', 'cost', '$', '3.88', 'in', 'New', 'York', '.', 'Please', 'buy', 'me', 'two', 'of', 'them', '.', 'Thanks', '.']
>>> 

执行结果:

4.2 命名实体识别

StanfordNERTagger 英文命名实体识别

>>> from nltk.tag import StanfordNERTagger
>>> eng_tagger = StanfordNERTagger(model_filename=r'E:\tools\stanfordNLTK\jar\classifiers\english.all.3class.distsim.crf.ser.gz',path_to_jar=r'E:\tools\stanfordNLTK\jar\stanford-ner.jar')
>>> print(eng_tagger.tag('Rami Eid is studying at Stony Brook University in NY'.split()))
[('Rami', 'PERSON'), ('Eid', 'PERSON'), ('is', 'O'), ('studying', 'O'), ('at', 'O'), ('Stony', 'ORGANIZATION'), ('Brook', 'ORGANIZATION'), ('University', 'ORGANIZATION'), ('in', 'O'), ('NY', 'O')]

运行结果

StanfordNERTagger 中文命名实体识别

>>> result
'四川省 成都 信息 工程 大学 我 在 博客 园 开 了 一个 博客 , 我 的 博客 名叫 伏 草 惟 存 , 写 了 一些 自然语言 处理 的 文章 。\r\n'
>>> from nltk.tag import StanfordNERTagger
>>> chi_tagger = StanfordNERTagger(model_filename=r'E:\tools\stanfordNLTK\jar\classifiers\chinese.misc.distsim.crf.ser.gz',path_to_jar=r'E:\tools\stanfordNLTK\jar\stanford-ner.jar')
>>> for word, tag in  chi_tagger.tag(result.split()):
	print(word,tag)

运行结果

 

4.3 词性标注

StanfordPOSTagger 英文词性标注

>>> from nltk.tag import StanfordPOSTagger
>>> eng_tagger = StanfordPOSTagger(model_filename=r'E:\tools\stanfordNLTK\jar\models\english-bidirectional-distsim.tagger',path_to_jar=r'E:\tools\stanfordNLTK\jar\stanford-postagger.jar')
>>> print(eng_tagger.tag('What is the airspeed of an unladen swallow ?'.split()))

运行结果

StanfordPOSTagger 中文词性标注

>>> from nltk.tag import StanfordPOSTagger
>>> chi_tagger = StanfordPOSTagger(model_filename=r'E:\tools\stanfordNLTK\jar\models\chinese-distsim.tagger',path_to_jar=r'E:\tools\stanfordNLTK\jar\stanford-postagger.jar')
>>> result
'四川省 成都 信息 工程 大学 我 在 博客 园 开 了 一个 博客 , 我 的 博客 名叫 伏 草 惟 存 , 写 了 一些 自然语言 处理 的 文章 。\r\n'
>>> print(chi_tagger.tag(result.split()))

 运行结果

4.4 句法分析参考文献资料

StanfordParser英文语法分析

>>> from nltk.parse.stanford import StanfordParser
>>> eng_parser = StanfordParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\englishPCFG.ser.gz")
>>> print(list(eng_parser.parse("the quick brown fox jumps over the lazy dog".split())))

运行结果

StanfordParser 中文句法分析

>>> from nltk.parse.stanford import StanfordParser
>>> chi_parser = StanfordParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\chinesePCFG.ser.gz")
>>> sent = u'北海 已 成为 中国 对外开放 中 升起 的 一 颗 明星'
>>> print(list(chi_parser.parse(sent.split())))

运行结果

4.5 依存句法分析

StanfordDependencyParser 英文依存句法分析 

>>> from nltk.parse.stanford import StanfordDependencyParser
>>> eng_parser = StanfordDependencyParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\englishPCFG.ser.gz")
>>> res = list(eng_parser.parse("the quick brown fox jumps over the lazy dog".split()))
>>> for row in res[0].triples():
    print(row)

运行结果

StanfordDependencyParser 中文依存句法分析

>>> from nltk.parse.stanford import StanfordDependencyParser
>>> chi_parser = StanfordDependencyParser(r"E:\tools\stanfordNLTK\jar\stanford-parser.jar",r"E:\tools\stanfordNLTK\jar\stanford-parser-3.6.0-models.jar",r"E:\tools\stanfordNLTK\jar\classifiers\chinesePCFG.ser.gz")
>>> res = list(chi_parser.parse(u'四川 已 成为 中国 西部 对外开放 中 升起 的 一 颗 明星'.split()))
>>> for row in res[0].triples():
    print(row)

运行结果

 

5 参考文献和知识扩展


  1. NLTK官方网站
  2. NLTK的API
  3. NLTK中使用斯坦福中文分词器
  4. GitHub上NLTK源码

 

 

修正:本文之前相关jra不完整,完整代码请进QQ下载

机器学习和自然语言QQ群:436303759

自然语言处理和机器学习QQ交流群:436303759

【微信公众号:datathinks】
自然语言处理和机器学习微信公众号:datathinks

源码请进QQ群文件下载:

图5-1 完整项目文件

运行效果

http://www.cnblogs.com/baiboy
目录
打赏
0
0
0
0
49
分享
相关文章
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【01】做一个精美的打飞机小游戏,浅尝阿里云通义灵码python小游戏开发AI编程-之飞机大战小游戏上手实践-优雅草央千澈-用ai开发小游戏尝试-分享源代码和游戏包
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
【02】做一个精美的打飞机小游戏,python开发小游戏-鹰击长空—优雅草央千澈-持续更新-分享源代码和游戏包供游玩-记录完整开发过程-用做好的素材来完善鹰击长空1.0.1版本
如何在Python中管理模块和包的依赖关系?
在实际开发中,通常会结合多种方法来管理模块和包的依赖关系,以确保项目的顺利进行和可维护性。同时,要及时更新和解决依赖冲突等问题,以保证代码的稳定性和可靠性
67 4
手动解决Python模块和包依赖冲突的具体步骤是什么?
需要注意的是,手动解决依赖冲突可能需要一定的时间和经验,并且需要谨慎操作,避免引入新的问题。在实际操作中,还可以结合使用其他方法,如虚拟环境等,来更好地管理和解决依赖冲突😉。
如何在Python中自动解决模块和包的依赖冲突?
完全自动解决所有依赖冲突可能并不总是可行,特别是在复杂的项目中。有时候仍然需要人工干预和判断。自动解决的方法主要是提供辅助和便捷,但不能完全替代人工的分析和决策😉。
python中模板和包的使用
本文介绍了 Python 模块和包的基本概念及使用方法。模块是 Python 程序结构的核心,每个以 `.py` 结尾的源文件都是一个模块,包含可重用的代码。文章详细讲解了模块的导入方式(如 `import` 和 `from...import`),模块的搜索顺序,以及如何创建和发布自己的模块。此外,还介绍了包的概念,包是包含多个模块的特殊目录,并通过 `__init__.py` 文件定义对外提供的模块列表。最后,文章简述了如何使用 `pip` 工具管理第三方模块的安装与卸载。作者:大石头的笔记;来源:稀土掘金。
|
1月前
|
[oeasy]python048_用变量赋值_连等赋值_解包赋值_unpack_assignment _
本文介绍了Python中变量赋值的不同方式,包括使用字面量和另一个变量进行赋值。通过`id()`函数展示了变量在内存中的唯一地址,并探讨了变量、模块、函数及类类型的地址特性。文章还讲解了连等赋值和解包赋值的概念,以及如何查看已声明的变量。最后总结了所有对象(如变量、模块、函数、类)都有其类型且在内存中有唯一的引用地址,构成了Python系统的基石。
31 5
|
2月前
|
Python的模块和包
总之,模块和包是 Python 编程中非常重要的概念,掌握它们可以帮助我们更好地组织和管理代码,提高开发效率和代码质量
55 5
如何在Python中解决模块和包的依赖冲突?
解决模块和包的依赖冲突需要综合运用多种方法,并且需要团队成员的共同努力和协作。通过合理的管理和解决冲突,可以提高项目的稳定性和可扩展性
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程
如何使用阿里云的语音合成服务(TTS)将文本转换为语音?本文详细介绍了从注册账号、获取密钥到编写Python代码调用TTS服务的全过程。通过简单的代码示例,展示如何将文本转换为自然流畅的语音,适用于有声阅读、智能客服等场景。
570 3
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等