一种堆外内存缓存策略加速数据写OSS

本文涉及的产品
EMR Serverless StarRocks,5000CU*H 48000GB*H
简介:

1. 背景介绍

EMR集群中作业写数据到OSS时,需要先将数据缓存在本地,然后再一次性上传到OSS中。EMR支持两种缓存策略:

  • disk
  • off-heap

两种缓存测试使用场景略有区别:

  • 本地磁盘缓存策略适用到任何场景,且能满足较大文件上传需求。
  • 堆外内存缓存策略在性能上较磁盘缓存有优势,但是受限于内存资源。在实现上,堆外内存的申请会限制在一定范围内,当数据产生速率超过数据上传速率时,输出流会block住,需要等待进行中的上传任务完成。

潜在问题:

  • 作业提交到Yarn:当使用堆外内存策略时,存在内存超用被Yarn杀掉的风险。所以在内存参数设置上需要格外小心,不然会影响到作业的稳定性。

2. 如何使用

作业参数中配置"fs.oss.upload.bufferType",可选值为"disk"或者"off-heap"。以下举例:

1. hadoop fs -Dfs.oss.upload.bufferType=disk -put a.txt oss://xxx/xxx/

2. Hadoop作业: 
           Configuration conf = new Configuration()
           conf.set("fs.oss.upload.bufferType", "off-heap")
           ...
           
3. Spark作业:
           val conf = new SparkConf()
           conf.set("spark.hadoop.fs.oss.upload.bufferType", "off-heap")
           ...

3. Benchmark

VPC网络,SSD云盘/高效云盘,MN4,4核16G机型,测试纯写数据时间。

文件大小 块大小 并发度 Disk buffer (SSD云盘) Disk buffer (高效云盘) Off-heap buffer vs. SSD云盘 性能提升(%) vs.高效云盘 性能提升(%)
1024MB 256KB 5 23009ms 20773ms 18661ms +18.8% 10.2%
1024MB 1MB 5 11310ms 18524ms 10233ms +9.5% +44.8%
1024MB 4MB 5 10318ms 18001ms 10191ms +1.5% +43.4%
1024MB 16MB 5 10212ms 17796ms 10184ms +0.3% +42.8%
1024MB 64MB 5 10945ms 18612ms 10216ms +6.7% +45.1%
1024MB 128MB 5 13240ms 20181ms OOM: Direct buffer memory N/A N/A
256MB 256KB 5 4511ms 4968ms 4636ms -2.7% +6.7%
256MB 1MB 5 2417ms 4474ms 2381ms +1.5% +46.8%
256MB 4MB 5 2417ms 4386ms 2433ms -0.7% +44.3%
256MB 16MB 5 2433ms 4337ms 2465ms -1.3% +43.2%
256MB 64MB 5 3232ms 5273ms 2411ms +33.7% +54.3%
256MB 128MB 5 4392ms 6197ms 3118ms +29.0% +49.7%
64MB 256KB 5 1252ms 1337ms 1252ms +0% +6.4%
64MB 1MB 5 611ms 1117ms 577ms +5.6% +48.3%
64MB 4MB 5 567ms 1084ms 559ms +1.4% +48.4%
64MB 16MB 5 597ms 1108ms 624ms -4.5% +43.7%
64MB 64MB 5 1569ms 1491ms 1499ms +4.5% -0.5%
64MB 128MB 5 1459ms 1730ms 1412ms +3.2% +18.4%
16MB 256KB 5 459ms 417ms 383ms +16.6% +8.2%
16MB 1MB 5 221ms 307ms 220ms +0% +28.3%
16MB 4MB 5 254ms 327ms 198ms +22.0% +39.4%
16MB 16MB 5 431ms 398ms 418ms +3.0% -5%
16MB 64MB 5 412ms 425ms 400ms +2.9% +5.9%
16MB 128MB 5 418ms 405ms 443ms -5.9% -9.3%
相关实践学习
借助OSS搭建在线教育视频课程分享网站
本教程介绍如何基于云服务器ECS和对象存储OSS,搭建一个在线教育视频课程分享网站。
目录
相关文章
|
1月前
|
存储 算法 Java
Java内存管理深度剖析与优化策略####
本文深入探讨了Java虚拟机(JVM)的内存管理机制,重点分析了堆内存的分配策略、垃圾回收算法以及如何通过调优提升应用性能。通过案例驱动的方式,揭示了常见内存泄漏的根源与解决策略,旨在为开发者提供实用的内存管理技巧,确保应用程序既高效又稳定地运行。 ####
|
3天前
|
算法 Java
堆内存分配策略解密
本文深入探讨了Java虚拟机中堆内存的分配策略,包括新生代(Eden区和Survivor区)与老年代的分配机制。新生代对象优先分配在Eden区,当空间不足时执行Minor GC并将存活对象移至Survivor区;老年代则用于存放长期存活或大对象,避免频繁内存拷贝。通过动态对象年龄判定优化晋升策略,并介绍Full GC触发条件。理解这些策略有助于提高程序性能和稳定性。
|
21天前
|
缓存 API C#
C# 一分钟浅谈:GraphQL 中的缓存策略
本文介绍了在现代 Web 应用中,随着数据复杂度的增加,GraphQL 作为一种更灵活的数据查询语言的重要性,以及如何通过缓存策略优化其性能。文章详细探讨了客户端缓存、网络层缓存和服务器端缓存的实现方法,并提供了 C# 示例代码,帮助开发者理解和应用这些技术。同时,文中还讨论了缓存设计中的常见问题及解决方案,如缓存键设计、缓存失效策略等,旨在提升应用的响应速度和稳定性。
36 13
|
22天前
|
NoSQL 算法 Redis
redis内存淘汰策略
Redis支持8种内存淘汰策略,包括noeviction、volatile-ttl、allkeys-random、volatile-random、allkeys-lru、volatile-lru、allkeys-lfu和volatile-lfu。这些策略分别针对所有键或仅设置TTL的键,采用随机、LRU(最近最久未使用)或LFU(最少频率使用)等算法进行淘汰。
36 5
|
25天前
|
存储 缓存 监控
Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
本文介绍了Docker容器性能调优的关键技巧,涵盖CPU、内存、网络及磁盘I/O的优化策略,结合实战案例,旨在帮助读者有效提升Docker容器的性能与稳定性。
66 7
|
4天前
|
存储 消息中间件 设计模式
缓存数据一致性策略如何分类?
数据库与缓存数据一致性问题的解决方案主要分为强一致性和最终一致性。强一致性通过分布式锁或分布式事务确保每次写入后数据立即一致,适合高要求场景,但性能开销大。最终一致性允许短暂延迟,常用方案包括Cache-Aside(先更新DB再删缓存)、Read/Write-Through(读写穿透)和Write-Behind(异步写入)。延时双删策略通过两次删除缓存确保数据最终一致,适用于复杂业务场景。选择方案需根据系统复杂度和一致性要求权衡。
16 0
|
26天前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
59 1
|
1月前
|
存储 缓存 安全
在 Service Worker 中配置缓存策略
Service Worker 是一种可编程的网络代理,允许开发者控制网页如何加载资源。通过在 Service Worker 中配置缓存策略,可以优化应用性能,减少加载时间,提升用户体验。此策略涉及缓存的存储、更新和检索机制。
|
1月前
|
存储 分布式计算 算法
1GB内存挑战:高效处理40亿QQ号的策略
在面对如何处理40亿个QQ号仅用1GB内存的难题时,我们需要采用一些高效的数据结构和算法来优化内存使用。这个问题涉及到数据存储、查询和处理等多个方面,本文将分享一些实用的技术策略,帮助你在有限的内存资源下处理大规模数据集。
34 1
|
1月前
|
存储 监控 Java
深入理解计算机内存管理:优化策略与实践
深入理解计算机内存管理:优化策略与实践