Attention-based Extraction of Structured Information from Street View Imagery:基于注意力的街景图像提取结构化信息

简介: 基于注意力的街景图像提取结构化信息一种用于真实图像文本提取问题的TensorFlow模型。该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称。

基于注意力的街景图像提取结构化信息

一种用于真实图像文本提取问题的TensorFlow模型。

该文件夹包含在FSNS数据集数据集上训练新的注意OCR模型所需的代码,以在法国转录街道名称。 您还可以使用它来根据自己的数据进行培训。

更多细节可以在我们的论文中找到:

“从街景图像注意为基础提取结构化信息”

项目地址:https://github.com/tensorflow/models/tree/master/attention_ocr

Attention-based Extraction of Structured Information from Street View Imagery

A TensorFlow model for real-world image text extraction problems.

This folder contains the code needed to train a new Attention OCR model on the FSNS dataset dataset to transcribe street names in France. You can also use it to train it on your own data.

More details can be found in our paper:

“Attention-based Extraction of Structured Information from Street View Imagery”
http://www.tensorflownews.com/

目录
相关文章
|
机器学习/深度学习 自然语言处理 达摩院
Rethinking Information Extraction :信息抽取的现状与未来
​ ##引言 从计算到感知再到认知是业内学者都认同的人工智能技术发展路径。机器具备认知智能,进而实现推理、规划乃至联想和创作,在一定程度上需要一个充满知识的大脑,而信息抽取是获取知识的重要途径之一。 在具体的业务场景如搜索推荐,结构化的领域知识有利于实现细粒度文本理解,有利于实现精准的复杂问答,有利于
5638 0
|
6月前
|
机器学习/深度学习 Serverless 计算机视觉
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
【YOLOv8改进 - 注意力机制】Sea_Attention: Squeeze-enhanced Axial Attention,结合全局语义提取和局部细节增强
|
7月前
|
机器学习/深度学习 算法 计算机视觉
【YOLOv8改进】CPCA(Channel prior convolutional attention)中的通道注意力,增强特征表征能力 (论文笔记+引入代码)
该专栏聚焦YOLO目标检测的创新改进与实战,介绍了一种针对医学图像分割的通道优先卷积注意力(CPCA)方法。CPCA结合通道和空间注意力,通过多尺度深度卷积提升性能。提出的CPCANet网络在有限计算资源下,于多个数据集上展现优越分割效果。代码已开源。了解更多详情,请访问提供的专栏链接。
|
机器学习/深度学习 算法 数据可视化
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
 过去几年,在经典数据集PASCAL上,物体检测的效果已经达到 一个稳定水平。效果最好的方法是融合了多种低维图像特征和高维上 下文环境的复杂集成系统。在这篇论文里,我们提出了一种简单并且 可扩展的检测算法,可以在VOC2012最好结果的基础上将mAP值提 高30%以上——达到了53.3%。
174 0
深度学习论文阅读目标检测篇(一):R-CNN《Rich feature hierarchies for accurate object detection and semantic...》
|
算法 自动驾驶 数据可视化
计算机视觉论文速递(六)GANet: A Keypoint-based Global Association Network for Lane Detection 基于关键点建模的全局关联网络
 在CVPR 2022上,商汤智能汽车-创新研发中心团队提出一种新的基于关键点建模的车道线检测范式,即全局关联网络(GANet),通过直接回归车道线关键点到车道线起始点的偏移,来完成对车道线关键点的并行聚合,从而实现高效且准确的车道线检测。除此以外,本文还提出一个车道线感知的特征增强模块,以增强车道线的局部关键点关联,提升车道线局部连续性。本文所提方法在多个公开数据集上均超越已有方法,取得了良好的精度-速度均衡。
471 0
|
机器学习/深度学习 编解码 数据可视化
图像目标分割_2 FCN(Fully Convolutional Networks for Semantic Segmentation)
图像语义分割:给定一张图片,对图片上每一个像素点进行分类!但是与图像分类目的不同,语义分割模型要具有像素级的密集预测能力才可以。
265 0
|
存储 算法 数据挖掘
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
123 0
多媒体信息处理学习笔记-3. Feature Indexing and Retrieval
|
自然语言处理 知识图谱
通用信息抽取 UIE(Universal Information Extraction)
通用信息抽取 UIE(Universal Information Extraction)
1118 0
通用信息抽取 UIE(Universal Information Extraction)
|
机器学习/深度学习 编解码 数据可视化
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
文章被2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)会议录用。 论文地址:[https://ieeexplore.ieee.org/document/9157040/citations#citations](https://ieeexplore.ieee.org/document/9157040/citations#citations) CookGAN旨在解决因果关系效应。食物图像的因果演化隐含在一个连续的网络中。 本博客是精读这篇论文的报告,包含一些个人理解、知识拓展和总结。
Text to image论文精读 从菜谱描述自动生成菜肴照片 CookGAN: Causality based Text-to-Image Synthesis(基于因果关系的文本图像合成 )
|
机器学习/深度学习 算法 算法框架/工具
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking
181 2
传输丰富的特征层次结构以实现稳健的视觉跟踪 Transferring Rich Feature Hierarchies for Robust Visual Tracking