正则
基本都是参考:http://funhacks.net/2016/12/27/regular_expression/,部分小改动,感觉讲的蛮好的,做下记录。
正则表达式(regular expression)是可以匹配文本片段的模式。
字符
元字符 | 说明 | 正则表达式实例 | 匹配字符串 |
---|---|---|---|
一般字符 | 匹配自身 | py | python |
. | 匹配任意字符(换行符‘n’除外) | p.t | pyt |
\ | 转义字符 | python\.org | python.org |
[...] | 字符集,对应位置可以是字符集中任意字符。 可以逐个列出,也可以给出范围如[1234],也可以加入^取反,如[^1-4]表示不是1234的其他字符,所有的特殊字符字在字符集中都失去原来的特殊含义 | p[xyz]t | pxt,pyt,pzt |
预定义字符
元字符 | 说明 | 正则表达式实例 | 匹配字符串 |
---|---|---|---|
d | 数字:[0-9] | p\dy | p3y |
D | 数字:[^\d] | p\Dy | pay |
s | 空白字符:[<空格>,t\r\n\f\v] | p\sy | p y |
S | 非空白字符:[^\s] | p\Sy | pay |
w | 单词字符:[a-zA-Z0-9] | p\wy | pay |
W | 非单词字符:[^\w] | p\Wy | p y |
数量词
元字符 | 说明 | 正则表达式实例 | 匹配字符串 |
---|---|---|---|
* | 匹配前一个字符任意多次,包括0次 | pyt* | py/pyttttt |
+ | 匹配前一个字符至少1次 | pyt+ | pyt/pyttt |
? | 匹配前一个字符0次或1次 | pyt? | py/pyt |
{m} | 匹配前一个字符m次 | py{2}t | pyyt |
{m,n} | 匹配前一个字符m至n次,如果省略m,表示匹配0次至n次,如果省略,则表示匹配m次至无限次 | py{1,2}t | pyt/pyyt |
*? | 使得*变成非贪婪模式,类似的还有+? ,{m,n}? |
边界匹配
元字符 | 说明 | 正则表达式实例 | 匹配字符串 |
---|---|---|---|
^ | 匹配字符串开头,在多行模式中匹配每一行的开头 | ^python | python |
$ | 匹配字符串末尾,在多行模式中匹配每一行的末尾 | python$ | python |
逻辑或
元字符 | 说明 | 正则表达式实例 | 匹配字符串 | |||||
---|---|---|---|---|---|---|---|---|
\ | 先尝试匹配\ | 左边的表达式,匹配成功则跳过右边的表达式,否则尝试匹配右边的表达式 | 15[0\ | 1\ | 2\ | 3] | 150,151,152,153 |
分组
元字符 | 说明 | 正则表达式实例 | 匹配字符 |
---|---|---|---|
(……) | 被括起来的表达式作为分组,从表达式左边开始每遇到一个分组的左括号,编号加1 | (d+) | 123 |
\<number> | 应用编号为<number>的分组匹配到的字符串 | (d)abd1 | 1abd1 |
re模块
re 模块的一般使用步骤如下:
- 使用 compile 函数将正则表达式的字符串形式编译为一个 Pattern 对象
- 通过 Pattern 对象提供的一系列方法对文本进行匹配查找,获得匹配结果(一个 Match 对象)
- 最后使用 Match 对象提供的属性和方法获得信息,根据需要进行其他的操作
compile 函数
compile 函数用于编译正则表达式,生成一个 Pattern 对象,它的一般使用形式如下:
re.compile(pattern[, flag])
其中,pattern 是一个字符串形式的正则表达式,flag 是一个可选参数,表示匹配模式,比如忽略大小写,多行模式等。
import re
pattern = re.compile(r'\d+')
# 此处将匹配数字至少1次的正则表达式编译成 Pattern 对象
在上面,我们已将一个正则表达式编译成 Pattern 对象,接下来,我们就可以利用 pattern 的一系列方法对文本进行匹配查找了。Pattern 对象的一些常用方法主要有:
- match 方法
match 方法用于查找字符串的头部(也可以指定起始位置),它是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果。它的一般使用形式如下:
match(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。因此,当你不指定 pos 和 endpos 时,match 方法默认匹配字符串的头部。
当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。
>>> import re
>>> pattern = re.compile(r'\d+') # 用于匹配至少一个数字
>>> m = pattern.match('one12twothree34four') # 查找头部,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 2, 10) # 从'e'的位置开始匹配,没有匹配
>>> print m
None
>>> m = pattern.match('one12twothree34four', 3, 10) # 从'1'的位置开始匹配,正好匹配
>>> print m # 返回一个 Match 对象
<_sre.SRE_Match object at 0x10a42aac0>
>>> m.group(0) # 可省略 0
'12'
>>> m.start(0) # 可省略 0
3
>>> m.end(0) # 可省略 0
5
>>> m.span(0) # 可省略 0
(3, 5)
在上面,当匹配成功时返回一个 Match 对象,其中:
-
group([group1, …])
方法用于获得一个或多个分组匹配的字符串,当要获得整个匹配的子串时,可直接使用group()
或group(0)
; -
start([group])
方法用于获取分组匹配的子串在整个字符串中的起始位置(子串第一个字符的索引),参数默认值为 0; -
end([group])
方法用于获取分组匹配的子串在整个字符串中的结束位置(子串最后一个字符的索引+1),参数默认值为 0; -
span([group])
方法返回(start(group), end(group))
。
再看看一个例子:
>>> import re
>>> pattern = re.compile(r'([a-z]+) ([a-z]+)', re.I) # re.I 表示忽略大小写
>>> m = pattern.match('Hello World Wide Web')
>>> print m # 匹配成功,返回一个 Match 对象
<_sre.SRE_Match object at 0x10bea83e8>
>>> m.group(0) # 返回匹配成功的整个子串
'Hello World'
>>> m.span(0) # 返回匹配成功的整个子串的索引
(0, 11)
>>> m.group(1) # 返回第一个分组匹配成功的子串
'Hello'
>>> m.span(1) # 返回第一个分组匹配成功的子串的索引
(0, 5)
>>> m.group(2) # 返回第二个分组匹配成功的子串
'World'
>>> m.span(2) # 返回第二个分组匹配成功的子串
(6, 11)
>>> m.groups() # 等价于 (m.group(1), m.group(2), ...)
('Hello', 'World')
>>> m.group(3) # 不存在第三个分组
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
IndexError: no such group
- search 方法
search 方法用于查找字符串的任何位置,它也是一次匹配,只要找到了一个匹配的结果就返回,而不是查找所有匹配的结果,它的一般使用形式如下:
search(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。
当匹配成功时,返回一个 Match 对象,如果没有匹配上,则返回 None。
>>> import re
>>> pattern = re.compile('\d+')
>>> m = pattern.search('one12twothree34four') # 这里如果使用 match 方法则不匹配
>>> m
<_sre.SRE_Match object at 0x10cc03ac0>
>>> m.group()
'12'
>>> m = pattern.search('one12twothree34four', 10, 30) # 指定字符串区间
>>> m
<_sre.SRE_Match object at 0x10cc03b28>
>>> m.group()
'34'
>>> m.span()
(13, 15)
再来看一个例子:
import re
# 将正则表达式编译成 Pattern 对象
pattern = re.compile(r'\d+')
# 使用 search() 查找匹配的子串,不存在匹配的子串时将返回 None
# 这里使用 match() 无法成功匹配
m = pattern.search('hello 123456 789')
if m:
# 使用 Match 获得分组信息
print 'matching string:',m.group()
print 'position:',m.span()
执行结果:
matching string: 123456
position: (6, 12)
- findall 方法
上面的 match 和 search 方法都是一次匹配,只要找到了一个匹配的结果就返回。然而,在大多数时候,我们需要搜索整个字符串,获得所有匹配的结果。
findall 方法的使用形式如下:
findall(string[, pos[, endpos]])
其中,string 是待匹配的字符串,pos 和 endpos 是可选参数,指定字符串的起始和终点位置,默认值分别是 0 和 len (字符串长度)。
findall 以列表形式返回全部能匹配的子串,如果没有匹配,则返回一个空列表。
import re
pattern = re.compile(r'\d+') # 查找数字
result1 = pattern.findall('hello 123456 789')
result2 = pattern.findall('one1two2three3four4', 0, 10)
print result1
print result2
执行结果:
['123456', '789']
['1', '2']
- finditer 方法
finditer 方法的行为跟 findall 的行为类似,也是搜索整个字符串,获得所有匹配的结果。但它返回一个顺序访问每一个匹配结果(Match 对象)的迭代器。
import re
pattern = re.compile(r'\d+')
result_iter1 = pattern.finditer('hello 123456 789')
result_iter2 = pattern.finditer('one1two2three3four4', 0, 10)
print type(result_iter1)
print type(result_iter2)
print 'result1...'
for m1 in result_iter1: # m1 是 Match 对象
print 'matching string: {}, position: {}'.format(m1.group(), m1.span())
print 'result2...'
for m2 in result_iter2:
print 'matching string: {}, position: {}'.format(m2.group(), m2.span())
执行结果:
<type 'callable-iterator'>
<type 'callable-iterator'>
result1...
matching string: 123456, position: (6, 12)
matching string: 789, position: (13, 16)
result2...
matching string: 1, position: (3, 4)
matching string: 2, position: (7, 8)
- split 方法
split 方法按照能够匹配的子串将字符串分割后返回列表,它的使用形式如下:
split(string[, maxsplit])
其中,maxsplit 用于指定最大分割次数,不指定将全部分割。
import re
p = re.compile(r'[\s\,\;]+')
print p.split('a,b;; c d')
执行结果:
['a', 'b', 'c', 'd']
- sub 方法
sub 方法用于替换。它的使用形式如下:
sub(repl, string[, count])
其中,repl 可以是字符串也可以是一个函数:
- 如果 repl 是字符串,则会使用 repl 去替换字符串每一个匹配的子串,并返回替换后的字符串,另外,repl 还可以使用
\id
的形式来引用分组,但不能使用编号 0; - 如果 repl 是函数,这个方法应当只接受一个参数(Match 对象),并返回一个字符串用于替换(返回的字符串中不能再引用分组)。
count 用于指定最多替换次数,不指定时全部替换。
import re
p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'
def func(m):
return 'hi' + ' ' + m.group(2)
print p.sub(r'hello world', s) # 使用 'hello world' 替换 'hello 123' 和 'hello 456'
print p.sub(r'\2 \1', s) # 引用分组
print p.sub(func, s)
print p.sub(func, s, 1)
执行结果:
hello world, hello world
123 hello, 456 hello
hi 123, hi 456
hi 123, hello 456
- subn 方法
subn 方法跟 sub 方法的行为类似,也用于替换。它的使用形式如下:
subn(repl, string[, count])
它返回一个元组:
(sub(repl, string[, count]), 替换次数)
元组有两个元素,第一个元素是使用 sub 方法的结果,第二个元素返回原字符串被替换的次数
import re
p = re.compile(r'(\w+) (\w+)')
s = 'hello 123, hello 456'
def func(m):
return 'hi' + ' ' + m.group(2)
print p.subn(r'hello world', s)
print p.subn(r'\2 \1', s)
print p.subn(func, s)
print p.subn(func, s, 1)
执行结果:
('hello world, hello world', 2)
('123 hello, 456 hello', 2)
('hi 123, hi 456', 2)
('hi 123, hello 456', 1)
其他函数
事实上,使用 compile 函数生成的 Pattern 对象的一系列方法跟 re 模块的多数函数是对应的,但在使用上有细微差别。
- match 函数
match 函数的使用形式如下:
re.match(pattern, string[, flags]):
可以看到,match 函数不能指定字符串的区间,它只能搜索头部
- search 函数
search 函数的使用形式如下:
re.search(pattern, string[, flags])
search 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 search 方法类似
- findall 函数
re.findall(pattern, string[, flags])
findall 函数不能指定字符串的搜索区间,用法跟 Pattern 对象的 findall 方法类似
- finditer 函数
finditer 函数的使用方法跟 Pattern 的 finditer 方法类似,形式如下:
re.finditer(pattern, string[, flags])
- split 函数
split 函数的使用形式如下:
re.split(pattern, string[, maxsplit])
- sub函数
re.sub(pattern, repl, string[, count])
- subn 函数
subn 函数的使用形式如下:
re.subn(pattern, repl, string[, count])
两种模式的选择
- 使用 re.compile 函数生成一个 Pattern 对象,然后使用 Pattern 对象的一系列方法对文本进行匹配查找;
- 直接使用 re.match, re.search 和 re.findall 等函数直接对文本匹配查找;
需要重复用到正则表达式,尽量考虑用第一种
匹配中文
在某些情况下,我们想匹配文本中的汉字,有一点需要注意的是,中文的 unicode 编码范围 主要在 [u4e00-u9fa5],这里说主要是因为这个范围并不完整,比如没有包括全角(中文)标点,不过,在大部分情况下,应该是够用的。
假设现在想把字符串 title = u'你好,hello,世界' 中的中文提取出来,可以这么做:
import re
title = u'你好,hello,世界'
pattern = re.compile(ur'[\u4e00-\u9fa5]+')
result = pattern.findall(title)
print result
注意到,我们在正则表达式前面加上了两个前缀 ur
,其中 r
表示使用原始字符串,u
表示是 unicode 字符串。(python3 不需要加u)
执行结果:
[u'\u4f60\u597d', u'\u4e16\u754c']
贪婪匹配
在 Python 中,正则匹配默认是贪婪匹配(在少数语言中可能是非贪婪),也就是匹配尽可能多的字符。
比如,我们想找出字符串中的所有 div
块:
import re
content = 'aa<div>test1</div>bb<div>test2</div>cc'
pattern = re.compile(r'<div>.*</div>')
result = pattern.findall(content)
print result
执行结果:
['<div>test1</div>bb<div>test2</div>']
由于正则匹配是贪婪匹配,也就是尽可能多的匹配,因此,在成功匹配到第一个 </div>
时,它还会向右尝试匹配,查看是否还有更长的可以成功匹配的子串。
如果我们想非贪婪匹配,可以加一个 ?
,如下:
import re
content = 'aa<div>test1</div>bb<div>test2</div>cc'
pattern = re.compile(r'<div>.*?</div>') # 加上 ?
result = pattern.findall(content)
print result
结果:
['<div>test1</div>', '<div>test2</div>']